
Conditional Random Fields

B. Majoros

for eukaryotic gene prediction

 A hidden Markov model for discrete sequences is a generative model denoted by:

M = (Q, α, Pt , Pe)
 where:

•Q={q0, q1, ... , qn} is a finite set of discrete states,

•α is a finite alphabet such as {A, C, G, T},

•Pt (qi | qj) is a set of transition probabilities between states,

•Pe (si | qj) is set of emission probabilities within states.

During operation of the machine, emissions are observable, but states are not.

The (0th-order) Markov assumption indicates that each state is dependent only on the
immediately preceding state, and each emission is dependent only on the current state:

Decoding is the task of finding the most probable values for the unobservables.

Recall: Discrete-time Markov Chains

states (labels):

emissions (DNA):

“unobservables”

“observables”
A A T C G

q17 q5 q23 q12 q6

Other topologies of the underlying Bayesian network can be used to model additional
dependencies, such as higher-order emissions from individual states of a Markov chain:

More General Bayesian Networks

Incorporating evolutionary conservation from an alignment results in a PhyloHMM
(also a Bayesian network), for which efficient decoding methods exist:

“unobservables”

“observables”

A A T C G

q17 q5 q23 q12 q6

=unobservable

=observable

states

target genome

“informant”
genomes

 A (discrete-valued) Markov random field (MRF) is a 4-tuple M=(α, X, PM, G) where:

•α is a finite alphabet,

•X is a set of (observable or unobservable) variables taking values from α,

•PM is a probability distribution on variables in X,

•G=(X, E) is an undirected graph on X describing a set of dependence relations
among variables,

 such that PM(Xi|{Xk≠i}) = PM(Xi|NG(Xi)), for NG(Xi) the neighbors of Xi under G.

That is, the conditional probabilities as given by PM must obey the dependence
relations (a generalized “Markov assumption”) given by the undirected graph G.

A problem arises when actually inducing such a model in practice—namely, that we
can’t just set the conditional probabilities PM(Xi | NG(Xi)) arbitrarily and expect the joint
probability PM(X) to be well-defined (Besag, 1974).

Thus, the problem of estimating parameters locally for each neighborhood is
confounded by constraints at the global level...

Markov Random Fields

Suppose P(x)>0 for all (joint) value assignments x to the variables in X. Then by the
Hammersley-Clifford theorem, the likelihood of x under model M is given by:

!

PM (x) =
1

Z
e

Q(x)

!

Q(x
0
, x

1
,..., xn"1

) = xi#i (xi)
0$i<n

% + xix j#i, j (xi , xj)+ ...
0$i< j<n

%

 ...+ x
0
x

1
...xn"1

#
0,1,...,n"1

(x
0
, x

1
,..., xn"1

)

The Hammersley-Clifford Theorem

for normalization term Z:

 and where any Φi term not corresponding to a clique must be zero. (Besag, 1974)

where Q(x) has a unique expansion given by:

!

Z = e
Q(" x)

" x

#

The reason this is useful is that it provides a way to evaluate probabilities (whether
joint or conditional) based on the “local” functions Φ.

Thus, we can train an MRF by learning individual Φ functions—one for each clique.

What is a clique?

A clique is any subgraph in
which all vertices are
neighbors.

A Conditional random field (CRF) is a Markov random field of unobservables
which are globally conditioned on a set of observables (Lafferty et al., 2001):

Formally, a CRF is a 6-tuple M=(L,α,Y,X,Ω,G) where:

•L is a finite output alphabet of labels; e.g., {exon, intron},

•α is a finite input alphabet e.g., {A, C, G, T},

•Y is a set of unobserved variables taking values from L,

•X is a set of (fixed) observed variables taking values from α,

•Ω = {Φc : L|Y |×α|X |→} is a set of potential functions, Φc(y,x),

•G=(V, E) is an undirected graph describing a set of dependence relations E
among variables V = X ∪ Y, where E∩(X×X)=∅,

such that (α, Y, eΣΦ(c,x)/Z, G-X) is a Markov random field.

Conditional Random Fields

Note that:

1. The observables X are not included in the MRF part of the CRF, which is only over the
subgraph G-X. However, the X are deemed constants, and are globally visible to the Φ functions.

2. We have not specified a probability function PM, but have instead given “local” clique-specific
functions Φc which together define a coherent probability distribution via Hammersley-Clifford.

A Conditional random field is effectively an MRF plus a set of “external” variables
X, where the “internal” variables Y of the MRF are the unobservables () and the
“external” variables X are the observables ():

CRF’s versus MRF’s

Thus, we could denote a CRF informally as:
C=(M, X)

for MRF M and external variables X, with the understanding that the graph GX∪Y of the
CRF is simply the graph GY of the underlying MRF M plus the vertices X and any
edges connecting these to the elements of GY.

the MRF

fixed, observable,
variables X (not in
the MRF)

the CRF

Note that in a CRF we do not explicitly model any direct relationships
between the observables (i.e., among the X) (Lafferty et al., 2001).

Y

X

Because the observables X in a CRF are not included in the CRF’s underlying MRF,
Hammersley-Clifford applies only to the cliques in the MRF part of the CRF, which
we refer to as the u-cliques:

U-Cliques

Thus, we define the u-cliques of a CRF to be the cliques of the unobservable subgraph
GY=(Y, EY) of the full CRF graph GX∪Y=(X∪Y, EX∪Y); EY⊆Y×Y.

Whenever we refer to the “cliques” C of a CRF we will implicitly mean the u-cliques
only. Note that we are permitted by Hammersley-Clifford to do this, since only the
unobservable subgraph GY of the CRF will be treated as an MRF.

(NOTE: we will see later, however, that we may selectively include observables in the u-cliques)

u-cliques (include only
the unobservables, Y)

observables, X (not included
in the u-cliques)

the entire CRF

Y

X

Since the observables X are fixed, the conditional probability P(Y | X) of the
unobservables given the observables is:

Conditional Probabilities in a CRF

!

PM (y | x) =
1

Z(x)
e

Q(y,x)
=

1

e
Q(" y ,x)

" y

#
e

Q(y,x)

where Q(y,x) is evaluated via the potential functions—one per u-clique in the
(MRF) dependency graph GY:

!

Q(y,x) = "
c
(y

c
,x)

c#C

$

where yc denotes the “slice” of vector y consisting of only those elements indexed by the set c
(recall that, by Hammersley-Clifford, Φc may only depend on those variables in clique c).

Several important points:

1. The u-cliques C need not be maximal cliques, and they may overlap
2. The u-cliques contain only unobservables (y); nevertheless, x is an argument to Φc

3. The probability PM(y|x) is a joint distribution over the unobservables Y

The first point is one advantage of MRF’s—the modeler need not worry about decomposing the
computation of the probability into non-overlapping conditional terms. By contrast, in a
Bayesian network this could result in “double-counting” of probabilities, and unwanted biases.

Note that we are not
summing over x in the

denominator

A number of ad hoc modeling decisions are typically made with regard to the form of
the potential functions:

1. The xixj...xk coefficients in the xixj..xkGi,j,...,k(xi,xj,..,xk) terms from Besag’s formula
are typically ignored (they can in theory be absorbed by the potential functions).

2. Φc is typically decomposed into a weighted sum of feature sensors fi, producing:

3. Training of the model is typically performed in two steps (Vinson et al., 2007):

(i) train the individual feature sensors fi (independently) on known features of
the appropriate type

(ii) learn the λi’s using a gradient ascent procedure applied to the entire model
all at once (not separately for each λi).

!

P(y | x) =
1

Z
e

"i fi (yc ,x)

i#F

$
c#C

$

Common Assumptions

(Lafferty et al., 2001)

For “standard” decoding (i.e., not posterior decoding), in which we merely wish to
find the most probable assignment y to the unobservables Y, we can dispense with
the partition function (which is fortunate, since in the general case its computation
may be intractable):

In cases where the partition function is efficiently computable (such as for linear-
chain CRF’s, which we will describe later), posterior decoding is also feasible.

We will see later how the above optimization may be efficiently solved using
dynamic programming methods originally developed for HMM’s.

Simplifications for Efficient Decoding

!

argmax

y
P(y | x) =

argmax

y

1

Z
e

"
c
(y

c
,x)

c#C

$
=
argmax

y
"

c
(y

c
,x)

c#C

$

The Boltzmann Analogy

!

P
boltzmann

(x) =
1

Z
e
"E(x) kT

The Boltzmann-Gibbs distribution from statistical thermodynamics is strikingly
similar to the MRF formulation:

This gives the probability of a particular molecular configuration (or “microstate”) x occurring
in an ideal gas at temperature T, where k=1.38×10-23 is the Boltzmann constant. The normalizing
term Z is known as the partition function. The exponent E is the Gibbs free energy of the
configuration.

The MRF probability function may be conceptualized somewhat analogously, in which the
summed “potential functions” Φc (notice the difference in sign versus -E/kT) reflect the
“interaction potentials” between variables, and measure the “compatibility,” “consistency,” or
“co-occurrence patterns” of the variable assignments x:

The analogy is most striking in the case of crystal structures, in which the
molecular configuration forms a lattice described by an undirected graph of
atomic-level forces.

!

P
MRF
(x) =

1

Z
e

"
c
(x

c
)

c#C

$

Although intuitively appealing, this analogy is not the justification for MRF’s—the
Hammersley-Clifford result provides a mathematically justified means of evaluating an MRF
(and thus a CRF), and is not directly based on a notion of state “dynamics”.

CRF’s for DNA Sequence

A A T C G

q17 q5 q23 q12 q6

Recall the directed dependency model for a (0th-order) HMM:

For gene finding, the unobservables in a CRF would be the labels (exon, intron) for each
position in the DNA. In theory, these may depend on any number of the observables (the DNA):

The u-cliques in such a graph can be easily identified as being either singleton labels or pairs of
adjacent labels:

Such a model would need only two Φc functions—Φsingleton for “singleton label” cliques (left
figure) and Φpair for “pair label” cliques (right figure). We could evaluate these using the
standard emission and transition distributions of an HMM (but we don’t have to).

Note that longer-range
dependencies between labels are
theoretically possible, but are not
commonly used in gene finding (yet)

CRF’s versus HMM’s

!

arg max

"
P(" | S) =

arg max

"
P(")P(S |") =

argmax

"
log Ptrans (yi | yi#1)Pemit (si | yi)()

yi$"

%

!

argmax

"
P(" | S) =

argmax

"

1

Z
e

#f (c,S)$
=
argmax

"
#i f i(c,S)

c,i

$

Recall the decoding problem for HMM’s, in which we wish to find the most probable parse φ of
a DNA sequence S, in terms of the transition and emission probabilities of the HMM:

The corresponding derivation for CRF’s is:

Note several things:

1. Both optimizations are over sums—this allows us to use any of the dynamic
programming HMM/GHMM decoding algorithms for fast, memory-efficient parsing, with
the CRF scoring scheme used in place of the HMM/GHMM scoring scheme.

2. The CRF functions fi(c,S) may in fact be implemented using any type of sensor,
including such probabilistic sensors as Markov chains, interpolated Markov models
(IMM’s), decision trees, phylogenetic models, etc..., as well as any non-probabilistic
sensor, such as n-mer counts or binary indicators on the existence of BLAST hits, etc...

How to Select Optimal Potential Functions

?
Aside from the Boltzmann analogy (i.e., “compatibility” of variable

assignments), little concrete advice is available at this time. Stay tuned.

sorry about
that, man!

Training a CRF — Conditional Max Likelihood

!

"
CML

=
argmax

"
P" (# | S)

(S ,#)$T

%
&

'
((

)

*
+ +

!

"MLE =
argmax

"
P" (S,#)

(S ,#)$T

%
&

'
((

)

*
+ +

=
argmax

"
Pe(Si | yi ,di)Pt (yi | yi,1)Pd (di | yi)

yi$#

%
(S ,#)$T

%
&

'
((

)

*
+ +

Recall that (G)HMM’s are typically trained via maximum likelihood (ML):

due to the ease of computing this for fully-labeled training data—the Pe, Pt, and Pd
terms can be maximized independently (and very quickly in the case of non-hidden
Markov chains).

An alternative “discriminative training” objective function for (G)HMM’s is
conditional maximum likelihood (CML), which must be trained via gradient ascent or
some EM-like approach:

Although CML is rarely used for training gene-finding HMM’s, it is a very natural
objective function for CRF’s, and is commonly used for training the latter models.
Various gradient ascent approaches may be used for CML training of CRF’s.

Thus, compared with Markov chains, CRF’s should be more discriminative,
much slower to train and possibly more susceptible to over-training.

Avoiding Overfitting with Regularization

!

fobjective(") = P" (y | x)#
||" ||2

2$ 2

Because CRF’s are discriminatively trained, they sometimes suffer from overfitting
of the model to the training data. One method for avoiding overfitting is
regularization, which penalizes extreme values of parameters:

where ||θ|| is the norm of the parameter vector θ, and σ is a regularization parameter
(or “metaparameter”) which is generally set in an ad hoc fashion but is thought to be
generally benign when not set correctly (Sutton & McCallum, 2007).

The above function fobjective serves as the objective function during training, in place
of the usual P(y|x) objective function of conditional maximum likelihood (CML)
training. Maximization of the objective function thus performs a modified conditional
maximum likelihood optimization in which the parameters are simultaneously
subjected to a Gaussian prior (Sutton & McCallum, 2007).

Phylo-CRF’s
Analogous to the PhyloHMM’s described earlier, we can formulate a “PhyloCRF” by
incorporating phylogeny information into the dependency graph:

labels

target genome

“informant”
genomes

The white vertices in the informant trees denote ancestral genomes, which are not
available to us, and which we are not interested in inferring; they are used merely to
control for the non-independence of the informants. We call these latent variables, and
denote this set L, so that the model now consists of three disjoint sets of variables: X
(observables), Y (labels), and L (latent variables).

Note that this is still technically a CRF, since the dependencies between the observables
are modeled only indirectly, through the latent variables (which are unobservable).

Note how the clique decomposition maps nicely into the
recursive decomposition of Felsenstein’s algorithm!

U-cliques in a PhyloCRF
Note that the “cliques” identified in the phylogeny component of our PhyloCRF
contained observables, and therefore are not true u-cliques. However, we can identify
u-cliques corresponding (roughly) to the original cliques, as follows:

Recall that the observables x are globally visible to all Φ functions. Thus, we are free to
implement any specific Φc so as to utilize any subset x′ of the observables.

As a result, any u-clique c may be treated by Φc as a “virtual clique” (v-clique) c∪x′
which includes observables from x′. In this way, the u-cliques (shown on the right
above) may be effectively expanded to include observables as in the figure on the left.

v-cliques u-cliques

Including Labels in the Potential Functions
In order for the patterns of conservation among the informants to have any effect on decoding,
the Φc functions evaluated over the branches of the tree need to take into consideration the
putative label (e.g., coding, noncoding) at the current position in the alignment. This is
analogous to the use of separate evolution models for the different states q in a PhyloHMM:

P(I(1),...,I(n) | S, q)

The same effect can be achieved in the PhyloCRF very simply by introducing edges connecting
all informants and their ancestors directly to the label:

The only effect on the clique structure of the graph is to include the label in all (maximal) cliques
in the phylogeny. The Φc functions can then evaluate the conservation patterns along the branches
of the phylogeny in the specific context of a given label—i.e.,

 Φmr(Xmouse=C, Xrodent=G, Y=exon) vs. Φmr(Xmouse=C, Xrodent=G, Y=intron)

label

target genome

“informant”
genomes

The Problem of Latent Variables
In order to compute P(y|x) in the presence of latent variables, we have to sum over all
possible assignments l to the variables in L:

!

P
M
(y | x) = P

M
(y,l | x)

l

" =
1

Z(x)
e
Q(y,l ,x)

l

" =

e
Q(y,l,x)

l

"

e
Q(# y ,l,x)

y ,l

"
(Quattoni et al., 2006)

For “Viterbi” decoding we can again ignore the denominator:

!

arg max

y
PM (y | x) =

arg max

y
e

Q(y,l,x)

l

"

Unfortunately, performing this sum over the latent variables outside of the potential
function Q will be much slower than Felsenstein’s dynamic programming method for
evaluating phylogenetic trees having “latent” (i.e., “ancestral”) taxa.

However, evaluating Q on the cliques c∈C as usual (but omitting singleton cliques
containing only a latent variable) and shuffling terms gives us:

!

e
"(c,x)

c#C
$

l

$ = e
log(e" (c,x))

c#C
$

l

$ = e
log e

" (c,x)

c#C
%

l

$ = e
"(c,x)

c#C

%
l

$

Now we can expand the summation over individual latent variables and factor
individual summations within the evaluation of Q...

Factoring Along a Tree Structure

!

"(a) "(a,b) "(b,d)"(d)
d

#
$

%
&

'

(
) "(b,e)"(e)

e

#
$

%
&

'

(
)

b

#
*

+
,

-

.
/

a

"(a,c) "(c, f)"(f)
f

#
$

%
& &

'

(
)) "(c, g)"(g)

g

#
$

%
& &

'

(
))

c

#
*

+
,
,

-

.
/
/

a

c

f g

b

d e

!

PHMM (a) Pa"b Pb"d#(d , xd)
d

$
%

&
'

(

)
* Pb"e#(e, xe)

e

$
%

&
'

(

)
*

b

$
+

,
-

.

/
0

a

$ Pa"c Pc" f#(f , x f)
f

$
%

&
' '

(

)
* * Pc"g#(g, xg)

g

$
%

&
' '

(

)
* *

c

$
+

,
-
-

.

/
0
0

Consider the tree structure below. To simplify notation, let ξ() denote eΦ(). Then the term
from the previous slide expands along the cliques of the tree as follows:

!

"(a,b)"(a,c)"(b,d)"(b,e)"(c, f)"(c, g)
g

#
f

#
e

#
d

#
c

#
b

#
a

"(a)"(b)"(c)"(d)"(e)"(f)"(g)

!

"(a) #a ,b"(a,b) #b,d"(b,d)"(d)
d

$
%

&
'

(

)
* #b,e"(b,e)"(e)

e

$
%

&
'

(

)
*

b

$
+

,
-

.

/
0

a

$ #a ,c"(a,c) #c, f"(c, f)"(f)
f

$
%

&
' '

(

)
* * #c,g"(c, g)"(g)

g

$
%

&
' '

(

)
* *

c

$
+

,
-
-

.

/
0
0

Any term inside a summation which does not contain the summation
index variable can be factored out of that summation:

Now compare the CRF formulation (top) to the Bayesian network formulation under
Felsenstein’s recursion (bottom), where Pa→b is the lineage-specific substitution probability,
δ(d,xd)=1 iff d=xd (otherwise 0), and PHMM(a) is the probability of a under a standard HMM.

We can also introduce λ terms as in the common “linear combination” expansion of Q:

which may allow the CRF trainer to learn more discriminative “branch lengths”.

CRF:

Felsenstein:

!

e
"(c,x)#$

Linear-Chain CRFs (LC-CRF’s)
A common CRF topology for sequence parsing is the linear-chain CRF (LC-CRF)
(Sutton & McCallum, 2007):

!

P(y | x) =
1

Z
e

"i f i (c)

i#F

$
c#C

$
=

1

Z
e

%femit (x,y t)+µf trans (x,y t&1,yt)

t=0

|S |&1

$

For visual simplicity, all of the observables are denoted by a single shaded node.
Because of the simplified structure, the u-cliques are now trivially identifiable as
singleton labels (corresponding to “emission” functions femit) and pairs of labels
(corresponding to “transition” functions ftrans):

where we have made the common modeling assumption that the Φ functions expand as
linear combinations of “feature functions” fi.

Abstracting External Information via Feature Functions
The “feature functions” of a CRF’s provide a convenient way of incorporating
additional external evidence:

Additional “informant” evidence is now modeled not with additional vertices in the
dependency graph, but with additional “rich feature” functions in the decomposition of
Q (Sutton & McCallum, 2007):

!

P(y | x) =
1

Z
e

"i f i (c)

i#F

$
c#C

$
=

1

Z
e

%femit (x,y t)+µf trans (x,y t&1,yt)+ 'i f rich(i) (x,yt)

i#F

$
t=0

|S |&1

$

where the “informants” and other external evidence are now encapsulated in x.

other
evidence

target sequence

labels:

all observables

Phylo-CRF’s Revisited
Now a “PhyloCRF” can be formulated more simply as a CRF with a “rich feature”
function that applies Felsenstein’s algorithm in each column (Vinson et al., 2007):

the CRF

“rich features” of
the observables

Note that the resulting model is a hybrid between an undirected model (the CRF) and a
directed model (the phylogeny).

Is this optimal? Maybe not—the CRF training procedure cannot modify any of the
parameters inside of the phylogeny submodel so as to improve discrimination (i.e.,
labeling accuracy).

Then again, this separation may help to prevent overfitting.

Evaluated by Felsenstein’s pruning
algorithm (outside of the CRF)

This Sounds Like a “Combiner”!

Splice Predictions

Gene Finder 1

Gene Finder 2

Protein Alignment

mRNA Alignment

0.9 0.89

0.49

0.32

0.35

0.6

boundaries of putative exons

evidence
tracks

0.8

combining
function

decoder
(dyn. prog.)weighted ORF graph

gene prediction
(upper figure due to
J. Allen, Univ. of
MD)

A CRF is in some sense just a theoretically-
justified “Combiner” program

So, Why Bother with CRF’s at All?

Several advantages are still derived from the use of the “hybrid” CRF (i.e., CRF’s
with “rich features”):

1. The λ’s provide a “hook” for discriminative training of the overall model (though
they do not attend to the optimality, at the global level, of the parameterizations of
the submodels).

2. For certain training regimes (e.g., CML), the objective function is provably
convex, ensuring convergence to a global optimum (Sutton & McCallum, 2007).

3. Long-range dependencies between the unobservables may still be modeled
(though this hasn’t so far been used for gene prediction).

4. Use of a linear chain CRF (LC-CRF) usually renders the partition function
efficiently computable, so that posterior decoding is feasible.

3. Using a system-level CRF provides a theoretical justification for the use of so-
called fudge-factors (i.e., the λ’s) for weighting the contribution of submodels...

Thus, these programs are all instances of (highly simplified) CRF’s!

We should have been using CRF’s all along...

The Ubiquity of Fudge Factors
Many “probabilistic” gene finders utilize fudge factors in their source code, despite no obvious
theoretical justification for their use:

• folklore about in the source code of a certain popular ab initio gene finder1

• fudge factor in: NSCAN (“conservation score coefficient”; Gross & Brent, 2005)
• fudge factor in: ExoniPhy (“tuning parameter”; Siepel & Haussler, 2004)
• fudge factor in TWAIN (“percent identity”; Majoros et al., 2005)
• fudge factor in GlimmerHMM (“optimism”; M. Pertea, pers. communication)
• fudge factor in TIGRscan (“optimism”; Majoros et al., 2004)
• lack of fudge factors in EvoGene (Pedersen & Hein, 2003)

!

7 / 3

 1 folklore also states that this programs’s author made a “pact with the devil” in exchange for gene-
finding accuracy; attempts to replicate this effect have so far been unsuccessful (unpub. data).

or, to put it another way:

Vinson et al.: PhyloCRF’s

Vinson et al. (2007) implemented a phylogenetically-aware LC-CRF
using the following features:

• standard GHMM signal/content sensors
• standard GHMM state topology (i.e., gene syntax)
• a standard phylogeny module (i.e., Felsenstein’s algorithm)
• a gap term (for gaps in the aligned informant genome)
• an EST term

These authors also suggest the following principle for designing CRF’s
for gene prediction:

“...use probabilistic models for feature functions when possible and add non-
probabilistic features only when necessary”. (Vinson et al., 2007)

GHMM
decoder

..ACTGCTAGTCGTAGCGTAGC...
(syntactically well-formed)

gene predictions

GHMM
state/transition

diagram

CRF
weights

PhyloHMM
feature
sensors

So...How Different Is This, Really?

(fudge factors)(syntax
constraints)

(potential
functions)

Note that this component (which enforces phase tracking, syntax constraints, eclipsing due to in-
frame stop codons, etc.) is often the most difficult part of a eukaryotic gene finder to efficiently
implement and debug. All of these functionalities are needed by CRF-based gene finders.
Fortunately, the additive nature of the (log-space) HMM and CRF objective functions enables very
similar code to be used in both cases.

GCTATCGATTCTCTAATCGTCTATCGATCGTGGTATCGTACGTTCATTACTGACT...

sensor 1
sensor 2

sensor n
 . . .ATG’s

GT’S

AG’s

 . . .signal
queues

sequence:
detect putative signals

during left-to-right
pass over squence

insert into type-specific
signal queues

...ATG.........ATG......ATG..................GT

newly
detected
signal

elements
of the

“ATG”
queue

trellis links

Recall: Decoding via Sensors and Trellis Links

ATGGATGCTACTTGACGTACTTAACTTACCGATCTCT
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

in-frame stop codon!

Recall: Phase Constraints and “Eclipsing”

All of these syntactic constraints have to be tracked and enforced, just like in a
“generative” gene finder!

In short: gene syntax hasn’t changed, even if our model has!

“Generalized” or “Semi-Markov” CRF’s

The labeling y of a GCRF is a vector of indicators from {0,1}, where a ‘1’ indicates
that the corresponding signal in the ORF graph is part of the predicted parse φ, and a ‘0’
indicates that it is not. We can then use the ORF graph to relate the labels
(unobservables) instead of the putative signals (the observables), to obtain a CRF:

1 0 1 0 0 0 0 1 1labeling y:

Although this figure does not show it, each label will also have dependencies on other
nearby labels in the graph, besides those adjacent via the “ORF graph” edges—i.e.,
there are implicit edges not shown in this representation. We will come back to this.

A CRF can be very easily generalized into a “GCRF” so as to model feature lengths, by
utilizing an ORF graph as described previously for GHMM’s:

putative signals:

(unobservables)

(observables)

Cliques in a GCRF

!

P(" | S) =
1

Z
e

#emit femit (t ,S)+#trans ftrans (s,t)+#length flength (s ,t)

(s ,t)$"

%

The u-cliques of the GCRF are singletons (individual signals) and pairs of signals (i.e.,
an intron, an exon, a UTR, etc.):

where (s,t)∈φ are pairs of signals in a parse φ. Under Viterbi decoding this again
simplifies to a summation, and is thus efficiently computable using any GHMM
decoding framework (but with the CRF scoring function in place of the GHMM one).

The Φpair potential function can thus be decomposed into the familiar three terms for
“emission potential”, “transition potential”, and “duration potential”, which may be
evaluated in the usual way for a GHMM, or via non-probabilistic methods if desired:

1 0 1 0 0 0 0 1 1labeling y:

putative signals:

(unobservables)

(observables)

Enforcing Syntax Constraints

...ATG...GT....ATG......ATG....TAG....GT.....GT

This can be handled by augmenting Φpair so as to evaluate to 0 unless the pair is well-
formed: i.e., the paired signals must be labeled ‘1’ and all signals lying between them
must be labeled ‘0’:

Finally, to enforce phase constraints we need to use three copies of the ORF graph,
with links between the three graphs enforcing phase constraints based on lengths of
putative features (not shown).

1 0 0 1

1 0 1 0 0 0 0 1 1labeling y:

Note that it is possible to construct a labeling y which is not syntactically valid, because
the signals do not form a consistent path across the entire ORF graph. We are thus
interested in constraining the Φ functions so that only valid labelings have nonzero
scores:

Φpair

0 00

Summary
A CRF, as commonly formulated for gene prediction, is essentially just a
GHMM/GPHMM/PhyloGHMM, except that:

• every sensor has a fudge factor

• those fudge factors now have a theoretical justification

• the fudge factors should be optimized systematically, rather than being
tweaked by hand (currently the norm)

• the sensors need not be probabilistic (i.e., n-gram counts, gap counts, binary
indicators reflecting presence of genomic elements such as CpG islands or
BLAST hits or ...)

CRF’s may be viewed as theoretically justified combiner-type programs, which
traditionally have produced very high prediction accuracies despite being viewed (in
the pre-CRF world) as ad hoc in nature.

Use of latent variables allows more general modeling with CRF’s than via the
simple “rich feature” approach.

THE END

Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society B 36,
pp192-236.

Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In: Proc. 18th International Conf. on Machine Learning.

Quattoni A, Wang S, Morency L-P, Collins M, Darrell T (2006) Hidden-state conditional random fields. MIT CSAIL
Technical Report.

Sutton C, McCallum A (2006) An introduction to conditional random fields for relational learning. In: Getoor L & Taskar B
(eds.) Introduction to statistical relational learning. MIT Press.

Vinson J, DeCaprio D, Pearson M, Luoma S, Galagan J (2007) Comparative Gene Prediction using Conditional Random
Fields. In: B Scholkpf, J Platt, T Hoffman (eds.), Advances in Neural Information Processing Systems 19, MIT Press,
Cambridge, MA.

References

Acknowledgements
Sayan Mukherjee and Elizabeth Rach provided invaluable comments and suggestions for these slides.

