/)

maximum A | —
likelihood ~ ==47%
o E———

-=Vlajoros
Li;‘:‘i‘,’-

X @ a2 1 7 %
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Recall: Gene Syntax

< complete mRNA >
«———coding segment ——p
ATG TGA
7 <
’ N
7 \
’
’ S
7 \
’
P N
/7 N\
’ N
’ N
7/ \

«— exon sle— intron — sle— exon —sf«— intron —sle— exon —»

ATG -+ |GT—AG| -+ |GT—AG|---TGA

start codon donor site acceptor donor site acceptor stop codon
site site

Duke



Recall; “Pure” HMMs

An HMM is a stochastic machine M=(QO, o, P, P,) consisting of the
following:

* a finite set of states, O={qy, > --- » q,,}
* a finite alphabet o ={s, 5, ... , 5}

* a transition distribution 7, : Ox0 —R e., P,(q;1q)
* an emission distribution P, : Oxa —R Le., P,(s;|q))
An Example

5%

Mlz({QO9Q19Q2}9 {YaR} 9P[9Pe)

P=1(q0,9,,1), (q,,9,,0.8), 80%
(Q17QQ’O-15)7 (qpqo’o'os)a q
(42007, (401,0.3)} N T

100%
Pe:{(QIaYal)a (QI9R90)7 (Q29Y90)9 (q29R91)} DU_]_(_C ,




Generalized HMMs

A GHMM is a stochastic machine M=(0, «, P, P,, P,) consisting of
the following:

* a finite set of states, O={qy, ¢» --- » q,,}
e a finite alphabet a2 ={s, 5, ... , 5}

* a transition distribution 7, : Ox0 —R e., P,(q;1q)
e an emission distribution P, : Oxa'xN —R ie., P, (s;1q,d)
* a duration distribution P, : OxN —R Le., P,(d;| q))

Key Differences

e each state now emits an entire subsequence rather than just one symbol

» feature lengths are now explicitly modeled, rather than implicitly geometric
 emission probabilities can now be modeled by any arbitrary probabilistic model
* there tend to be far fewer states => simplicity & ease of modification

Ref: Kulp D, Haussler D, Reese M, Eeckman F (1996) A generalized hidden Markov model for the recognition of human genes in D k .
DNA. ISMB 96 A



HMMs & Geometric Feature Lengths

1-p
Pl | 0= [ TR0 100 2
=0 v
1

geometric
distribution

2000 4000 6000
exon length Duke




Model Abstraction in GHMMs

model M,

=

5




Typical GHMM Topology for Gene Finding

Fixed-length states Variable-length states
are called signal are called content

states (diamonds). / states (ovals).
e
internal

donor sit acceptor
>3 1 site
y \
initial single
exon \ exon
start stop
=% _codon codon

promoter poly-A Sparse: in—degree
Each state has a '\./ signal of all states is

separate submodel bounded by some

or sensor nded Constimt
Duke |

.
{
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Some GHMM Submodel Types

L-1
1. WMM (Weight Matrix) H P(x))
i=0
n-1 L-1
2. Nth-order Markov Chain (MC) HP (x, |x0“'xi—1)1_[ P(x; | X eXiy)
i=0 i=n
L-1
3. Three-Periodic Markov Chain (3PMC) H Bt imods) (X7)
i=0

n-1
5. Codon Bias 1_[ P(xa+3ixa+3i+1xa+3i+2)
. =0

Ref: Burge C (1997) Identification of complete gene

6 structures in human genomic DNA. PhD thesis. Stanford
. University.
u m, PeIMM(S | 8o--&i1) =
7. Interpolated Markov Model XP(s|gy.g.)+ A= 2A)P"™(s|g..g_) ifk>0
Ref: Salzberg SL, Delcher AL, Kasif S, White O (1998) | P, (s) ifk=20

Microbial gene identification using interpolated Markov
models. Nucleic Acids Research 26:544-548. DUkC .



Recall: Decoding with an HMM

_argmax _ argmax P(pnaS)
¢max_ ¢ P(¢|S) ¢ P(S)
_ argqizfzaxp((p/\ 5)
=1, PSIOPO)
/\/ \/‘
P(S|9)- HP(x D) P(¢) = HPt(yHl |y,
= T—emlSSlon prob. " tmnsmon prob.
b =" B mﬂ P |y B | 7))

Duke



Decoding with a GHMM

_argmax _ argmax P(pnaS)
¢max_ ¢ P(¢|S) ¢ P(S)

_ arggaaxp(¢A s)

=i@7¢ )P(@\A

A AL
p|-2 N - p|-2 N

=
P(S|9)=[P(S 1v.d)  P@) =] [P ly)Pd ] y)
= T—eifmls*sion prob. - ?

transition duration

prob. prob.
_argmax

p|-2
o =% I EZQIE A A AT ACARS
=0

Duke



Recall: Viterbi Decoding for HMMs

V(i,k)=.

V(o k=DR(g;19,)P.(x,4,) if k>0,

F(q;190)F.(x,1q;) if k£ =0.

Sequence—> e o o k_2 k_1 k k+1 o o o

<4— states

(i,k)

run time: O(Lx|Q)?) -



Naive GHMM Decoding

?

N ~
. , N
) \
ot '
"y ' -
LN ’
N .
- -
~
o

position

T

.o ’ B
. . ’ N
. ~ .- S am”
- .- PN
. D . *
s ‘ '
\ L] oo
N . . . * ’
~__e ~__ - S .
.
.
.
.
. .
. .
. v
. .
. '
.

sequence

Y

model states

-
.
-
J

run time: O(L3x|0|?) Duk



Assumptions in GHMM Decoding for Gene Finding

(1) The emission functions P, for variable-length features
are factorable 1n the sense that they can be expressed as a
product of terms evaluated at each position in a putative
feature—i.e.,

Jactorable(P,) <> 3, P (S)=II,/(S,)
for 0<i<|§] over any putative feature S.

(2) The lengths of noncoding features in genomes are
geometrically distributed.

(3) The model contains no transitions between variable-
length states.

Duke,



Assumption #3

Variable-length states cannot transition directly to each other.

Gl

N \?1 site

f exon \

initial

exon \ / exon \
start stop

=W \_codon

AV S8
signal

i
\

v

Duke,



Efficient Decoding via Signal Sensors

Each signal state has a signal sensor:

Signal sensor

LLACTCGATGCGAIGTCAATGCGATGCTACTATCGTAGC...
.

>

\¥

4

The “trellis” or “ORF graph”:

AR JOER

wv s IR ™
PR

7
AG TAG GT AG GT TAG ATG AG TAG
0045 .0032 .0031 .0021 .002 .0072 .0023 .0034 .0082



Efficient Decoding via Signal Sensors
m< seOnSOOTn

) insert into type-specific
signal < Tt signal queues

queues | EHREN < sensor 2
L _ < sensor 1

Y

.
sequence:GCTATCGATTCTCTAATCGTCTATCGATCGTGGTATCGTACGTTCATTACTGACT. . .
—>

detect putative signals
during left-to-right
pass over squence

trellis links
ATG......... ATG...... ATG. . . it it e e ettt GT
N _ -
—~
elements newly
of the detected
“ATG” signal

T Duke



Decoding with an ORF Graph

LT ATG GT TAG AG RT

Figure 8.17: Operation of the highestScoringPath() algorithm for
a small portion of a weighted ORF graph. The highest scoring path
is shown in bold, and represents the optimal gene parse for this
portion of the sequence. LT=left terminus, RT=right terminus.

Duke



The Notion of “Eclipsing”

C@ACTTACCGATCTCT

0120120120120120120120120120120120120

L in-frame stop codon!



Eclipsing of Signals

Algorithm 8.1 Eclipsing signals in coding queue G when a stop codon has
been encountered at position p. pos (s) 1is the position of the first base of
the signal’s consensus sequence (e.g., the A in ATG). 1len (s) 1s the length
of the signal’s consensus sequence (e.g., 3 for ATG).

procedure eclipse (ref G,p)
foreach seG do

w <« (pos(s)+len(s)-p)mod3;
eclipsed.[w]«true;
if eclipsed. (w+1)mod3] and

eclipsed,| (w+2)mod3]
then drop(s,G);

S O b W DN

Duke



Bounding the Number of Coding Predecessors

140.00

100.00

g0.00-

0.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 140 160 1.80 200 2.20 240 260 2.80

Figure 8.6 Number of potential coding predecessors (1'y,) as a
function of sequence length (in megabases). Data are from a 3 Mb
human DNA sequence. Linear regression resulted in a slope of
-0.000001, demonstrating that the number of coding predecessors
does not increase without bound,; the intercept indicated 27.3
predecessors on average.

Duke



Geometric Noncoding Lengths (Assumption #2)

1000 2000 3000

Figure 8.5 Intron length distribution for Homo sapiens (solid line)

and a geometric distribution (dashed line) with parameter
p=0.002.

Duke



Prefix Sum Arrays for Emission Probabilities

(Assumption #1: factorable content sensors)

start codon donor site
sensor window sensor window

ACGTTACGGCATGAATCGCAAGCGC TAT@TGTGC TG&TAGCGTAT CGTA

[ pusiv \
putative
a,[b] exon E a,le]

log P ,(Sy:1 .| exon, w) = a, [e]—ay [b]

Figure 8.9 Using a prefix sum array to compute the emission
probability for a putative exon. Subtraction is performed between
array elements at either end of the [b,e] interval, which covers
only the portion of the exon not covered by either signal sensor.

Duke



Bounding the Number of Noncoding Predecessors

Theorem 8.1 (Burge’s noncoding predecessor theorem)
Suppose that for some signal s;el’,, the optimal
noncoding predecessor was found to be some s*€l’,. If
the next signal encountered after s; is some s;€l’,,, then
under assumptions (1) and (2) above, s* is also the
optimal predecessor (of its type and phase) for s;.

- ~——o

° ° ° °
A Sj

Figure 8.7 Once an optimal noncoding predecessor s” is identified
for signal s;, no signal z preceding s can be selected as a
predecessor of a later signal s; assuming a geometric length
distribution and a factorable content scoring function.

Ref: Burge C (1997) Identification of complete gene structures in human genomic DNA. PhD thesis. Stanford University. D Lll‘SCr .



PSA Decoding

Algorithm 8.3 Overview of the PSA decoding algorithm. See text for
details.

procedure PSA (S, 0)
Initialize arrays via Equations 8.9 & 8.10
At each position along the sequence do:
Perform eclipsing via Algorithm 8.1
Apply signal sensors at current location
If a putative signal s; 1s detected then:
Link s; back to optimal predecessors
via Eqg. 8.14
Append s; to appropriate signal queues
Form the optimal parse ¢* via Algorithm 8.2
0. Convert ¢" to a set of gene predictions

= O oo Joy Ul WDN B

run time: O(Lx|Q|)

(assuming a sparse GHMM topology) Dukc ._



Traceback for GHMMs

Algorithm 8.2 Reconstruction of the optimal parse by tracing back through
trellis links. Parameters are the selected right-terminus signal s and its
chosen phase w. Returns a stack of signals constituting the optimal parse,
with the top signal at the beginning of the parse and the bottom signal at the
end. exon length(p,s) denotes the number of coding nucleotides
between signals p and s.

procedure traceback (s, w)

stack K;

push K, s;

while —left terminus(s) do
p<—pred(s,w) ;
push K, p;
if type(p)€{ATG,TAG} then w«0;
elsif type(p)=AG then

w <« (w—-exon length (p, s) )mod3;

S<p;

0. return K;

W 00 Jo Ud W

Duke



DSP Decoding

noncoding coding noncoding coding noncoding coding
tier /\ /*\\//‘\\//\\
1|frame: 012012012012012012012012012012012012012
2lseq nnATGnnnnnGTnnn AGnn nGTnnnnAGnnnnnnnTAG
3| phase: 01201201 201 2012012012
4§§JQIZIII Pl
ESJ\Z ................
c - - .
3 ,x '>< <
SEIY / - ‘
Ay My S 7 iy I g oy A g D e Ay Oy
O & e N I Iy I BN gy B L
T ATG ATG GT GT AG AG GT GT AG AG TAG
A=2 A=0 A=1

DSP = Dynamic Score Propagation: we incrementally propagate the
scores of all possible partial parses up to the current point in the
sequence, during a single left-to-right pass over the sequence.

Ref: Majoros WM, Pertea M, Delcher AL, Salzberg SL (2005) Efficient decoding algorithms for generalized hidden Markov model
gene finders. BMC Bioinformatics 6:16. D UL(CT ._



DSP Decoding

Algorithm 8.4 Overview of the DSP decoding algorithm. See text for
details.

procedure DSP (S, 0)

1. At each position along the sequence do:

2. Evaluate all content sensors

3. Update accumulators with content scores
4. Perform eclipsing via Algorithm 8.1

5. Allow mature signals to graduate from

6. their holding queues
7. Apply signal sensors at current location
8. If a putative signal s; 1s detected then:
9. Link s; back to optimal predecessors
10. Propagate appropriate queue elements
11. Append s; to appropriate holding queues
12. Form the optimal parse ¢* via Algorithm 8.2
13. Convert ¢" to a set of gene predictions

run time: O(Lx|Q|)

(assuming a sparse GHMM topology) Dukc ._



PSA vs. DSP Decoding

Theorem 8.2 (Equivalence of PSA and DSP) Let S be a
sequence and 0 a set of model parameters for a GHMM.

Then given parses ¢ ps,~PSA(S,0) and ¢ psp=DSP(S,0)
selected under the PSA and DSP decoding algorithms,
respectively, we have ¢ ps=@" psp.

Space complexity:

PSA: O(Lx|Q|)
DSP: O(L+Q))
RAM/state | seconds/
(Mb) state
DSP 0.95 2.8
PSA 14 2.8

Table 8.2 Comparison of memory and time requirements of the
PSA vs. DSP decoding algorithms on a sample 922 kb sequence.
DSP requires far less memory, while achieving the same speed as
PSA. Adapted from from (Majoros et al., 2005a). Duke



Modeling Isochores

I: {G,c} density € [0%,43%],
II: {G,c} density € (43%,51%],
III: {G,c} density € (51%, 57%],
IV: {G,c} density € (57%, 100%].

“‘inhomogeneous
GHMM’

Ref: Allen JE, Majoros WH, Pertea M, Salzberg SL (2006) JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of
human genes in the ENCODE regions. Genome Biology 7(Supp! 1):S9. D U}R(CT )



Explicit Modeling of Noncoding Lengths

.
.
.
.
.
.
.
.
.
.
.
“
N
-~
S
Seo
-~

0 explicit | geometric

...........
..........................

200 400

Figure 8.14: Explicit length modeling for noncoding features. The
observed distribution of Arabidopsis intron lengths (solid line) is
shown with a geometric distribution (dashed line). The geometric
distribution is a reasonably good fit for lengths>100 bp. Below
100 bp we can use an explicit length distribution, as long as the

intron queue stores all donor sites fewer than 100 bp away from
the current position.

- ~—
- ~
/ ~.

/

A /v(\ShOI‘t intron >\A A~ Ref: Stanke M,
. N _ b Waack S (2003)
still O (L X | Q | ) ) —}\/ donor . <accepto [ Gene prediction

Ssite < o » Site with a hidden
but slower by a N \A(// , \‘\/ NS Markov model and
constant factor  long intron | a new intron
S~ 7 submodel.

Bioinformatics

19:11215-11225.

N\

Figure 8.15: Explicit length modeling for introns. The short intron
model is capable of generating introns of length up to some

maximum, Lg,,,,, whereas the long intron model can generate only
introns longer than this. DUL(C

UNIVE SITY



MLE Training for GHMMSs

argmax
HMLE = gg HP(Sa ¢)
(S.p)ET

(
argmax
= g@ 1_[ HPe(Sl|y,7dz)Pt(yz|yz—1)Pd(dl|yl)
\(S$)ET y,Ep
1S -1

/
s B N EACARD ACARS | EACHED.

0 \(S.9)ET y,E¢ 7 J=0 N

estimate via construct a estimate via
labeled histogram of labeled
training data, observed training data,
as in HVMIM Ifeatl:;e as in HVIM
engths E
a . = 4 €= QR
i -1 50

000
| I | |
0 500 1000 1500 2000 2500 3000
exon length

Duke



Maximum Likelihood vs. Conditional Maximum Likelihood

arg max
9,,, =28 . ] [PS.9)
(SPET
maximizing P,, P,
arg max P tel
— g@ ( n nPe(Si B BIAGA RV ACARS mda?(ieraiazr::tge
(S.9)ET y,EP

entire expression

(
HCML = arg;nax HP(¢ | S))

\(S.$)ET
/ \ Mmaximizing P, P,
P(S v .dYP(v. v YP.(d. |v)| F.separately
H e( l|y19 l) t(yz|yz—l) d( l|y1) DOES NOT
argmax 1—[ y,E¢ —
= maximize the
0 (S.9)ET P(S) entire expression
\ .. MLE# CML

Duke,



Discriminative Training of GHMMSs

_arg maX(

discrim

traini MLE
raining _’
trainer

0

accuracy on training Set)

|

new |
_|.> keep
mOdel\ the

best
GHMM modify
Decoder parameters

S— —
=jp | cvaluate

accuracy

sl Duke,,



Ref: Majoros WM, Salzberg SL (2004) An
empirical analysis of training protocols for

probabilistic gene finders. BMC Bioinformatics

5:206.

Discriminative Training of GHMMSs

/ * mean intron, intergenic, and UTR lengths
* transition probabilities
* exon “optimism” (section 7.3 4)
* sizes of all signal sensor windows
* locations of consensus regions within signal sensor windows
* emission orders for Markov chains and other models
* sensitivity of signal thresholds (when thresholding is used —
section 8.3.1)
* number of signal boosting iterations to utilize during signal

training (section 11.1)
\_ * skew and kurtosis of exon length distributions (section 2.6)

nucleotide | exon gene
gradient | g4 | 819 | 48%
ascent
MLE 90% 71% 33%

Table 8.3: Gradient ascent vs. maximum likelihood estimation for
GHMM training. Both protocols were applied to 1000 training and
1000 (distinct) test genes from Arabidopsis thaliana. Metrics are,
left to right: nucleotide SMC, exon F-measure, and gene
sensitivity. Results from (Majoros and Salzberg, 2004). Duke



« GHMMSs generalize HMMs by allowing each state to emit a
subsequence rather than just a single symbol

 Whereas HMMs model all feature lengths using a geometric
distribution, coding features can be modeled using an arbitrary
length distribution in a GHMM

« Emission models within a GHMM can be any arbitrary
probabilistic model (“submodel abstraction™), such as a neural
network or decision tree

« GHMMs tend to have many fewer states => simplicity &
modularity

* When used for parsing sequences, HMMs and GHMMs
should be trained discriminatively, rather than via MLE, to
achieve optimal predictive accuracy

DURe |



