
Generalized Hidden Markov ModelsGeneralized Hidden Markov Models

CBB 231 / COMPSCI 261

for Eukaryotic gene predictionfor Eukaryotic gene prediction

W.H. MajorosW.H. Majoros



ATG TGA

coding segment
complete mRNA

ATG GT AG GT AG. . . . . . . . .
start codon stop codondonor site donor siteacceptor

site
acceptor

site

exon exon exonintronintron
TGA

Recall: Gene Syntax



An HMM is aAn HMM is a stochastic machine M=(Q, α, Pt, Pe) consisting of the
following:following:

• a finite set of states, Q={q0, q1, ... , qm}
• a finite alphabet α ={s0, s1, ... , sn}
• a transition distribution Pt : Q×Q                 i.e., Pt (qj | qi)
• an emission distribution Pe : Q×α                i.e., Pe (sj | qi)
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Recall: “Pure” HMMs

M1=({q0,q1,q2},{Y,R},Pt,Pe)

Pt={(q0,q1,1), (q1,q1,0.8),
       (q1,q2,0.15), (q1,q0,0.05),
       (q2,q2,0.7), (q2,q1,0.3)}

Pe={(q1,Y,1), (q1,R,0), (q2,Y,0), (q2,R,1)}

An Example



A GHMM is aA GHMM is a stochastic machine M=(Q, α, Pt, Pe, Pd) consisting of
the following:following:

• a finite set of states, Q={q0, q1, ... , qm}
• a finite alphabet α ={s0, s1, ... , sn}
• a transition distribution Pt : Q×Q                 i.e., Pt (qj | qi)
• an emission distribution Pe : Q×α*×          i.e., Pe (sj | qi,dj)
• a duration distribution Pe : Q×                  i.e., Pd (dj | qi)

Generalized HMMs

• each state now emits an entire subsequence rather than just one symbol
• feature lengths are now explicitly modeled, rather than implicitly geometric
• emission probabilities can now be modeled by any arbitrary probabilistic model
• there tend to be far fewer states => simplicity & ease of modification

Key Differences

Ref: Kulp D, Haussler D, Reese M, Eeckman F (1996) A generalized hidden Markov model for the recognition of human genes in
DNA.  ISMB '96.
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HMMs & Geometric Feature Lengths



Advantages:
   * Submodel abstraction
   * Architectural simplicity
   * State duration modeling

Disadvantages:
   * Decoding complexity
    

Model Abstraction in GHMMs



Fixed-length states
are called signal
states (diamonds).

Variable-length states
are called content

states (ovals).

Each state has a
separate submodel
or sensor

Typical GHMM Topology for Gene Finding

Sparse: in-degree
of all states is

bounded by some
small constant



1. WMM (Weight Matrix)

2. Nth-order Markov Chain (MC)

3. Three-Periodic Markov Chain (3PMC)

5. Codon Bias

6. MDD

7. Interpolated Markov Model
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Some GHMM Submodel Types
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Ref: Burge C (1997) Identification of complete gene
structures in human genomic DNA. PhD thesis. Stanford
University.

Ref: Salzberg SL, Delcher AL, Kasif S, White O (1998)
Microbial gene identification using interpolated Markov
models. Nucleic Acids Research 26:544-548.
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Recall: Decoding with an HMM
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Decoding with a GHMM
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Recall: Viterbi Decoding for HMMs

run time: O(L×|Q|2)



Naive GHMM Decoding

run time: O(L3×|Q|2)



(1) The emission functions Pe for variable-length features
are factorable in the sense that they can be expressed as a
product of terms evaluated at each position in a putative
feature—i.e.,

factorable(Pe) ⇔ ∃f Pe(S)=∏i f(S,i)

for 0≤i<|S| over any putative feature S.

(2) The lengths of noncoding features in genomes are
geometrically distributed.

(3) The model contains no transitions between variable-
length states.

Assumptions in GHMM Decoding for Gene Finding



Assumption #3
Variable-length states cannot transition directly to each other.



Each signal state has a signal sensor:

.0045     .0032   .0031   .0021   .002     .0072      .0023    .0034   .0082

The “trellis” or “ORF graph”:

Efficient Decoding via Signal Sensors



Efficient Decoding via Signal Sensors

GCTATCGATTCTCTAATCGTCTATCGATCGTGGTATCGTACGTTCATTACTGACT...

sensor 1
sensor 2

sensor n
    . . .ATG’s

GT’S

AG’s

    . . .signal
queues

sequence:
detect putative signals

during left-to-right
pass over squence

insert into type-specific
signal queues

...ATG.........ATG......ATG..................GT

newly
detected
signal

elements
of the

“ATG”
queue

trellis links



Decoding with an ORF Graph



The Notion of “Eclipsing”

ATGGATGCTACTTGACGTACTTAACTTACCGATCTCT
0 1 2  0 1 2  0 1 2  0 1 2  0 1 2  0  1 2 0  1 2 0 1  2  0 1 2 0 1  2  0 1 2  0 1 2 0

in-frame stop codon!



Eclipsing of Signals



Bounding the Number of Coding Predecessors



Geometric Noncoding Lengths (Assumption #2)



Prefix Sum Arrays for Emission Probabilities
(Assumption #1: factorable content sensors)



Bounding the Number of Noncoding Predecessors

Ref: Burge C (1997) Identification of complete gene structures in human genomic DNA. PhD thesis. Stanford University.



PSA Decoding

run time: O(L×|Q|)
(assuming a sparse GHMM topology)



Traceback for GHMMs



DSP Decoding

Ref: Majoros WM, Pertea M, Delcher AL, Salzberg SL (2005) Efficient decoding algorithms for generalized hidden Markov model
gene finders. BMC Bioinformatics 6:16.

DSP = Dynamic Score Propagation: we incrementally propagate the
scores of all possible partial parses up to the current point in the
sequence, during a single left-to-right pass over the sequence.



DSP Decoding

run time: O(L×|Q|)
(assuming a sparse GHMM topology)



PSA vs. DSP Decoding

Space complexity:
PSA:  O(L×|Q|)
DSP:  O(L+|Q|)



Modeling Isochores

“inhomogeneous
GHMM”

Ref: Allen JE, Majoros WH, Pertea M, Salzberg SL (2006) JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of
human genes in the ENCODE regions. Genome Biology 7(Suppl 1):S9.



Explicit Modeling of Noncoding Lengths

still O(L×|Q|),
but slower by a
constant factor

Ref: Stanke M,
Waack S (2003)
Gene prediction

with a hidden
Markov model and

a new intron
submodel.

Bioinformatics
19:II215-II225.
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MLE Training for GHMMs

estimate via
labeled

training data,
as in HMM

estimate via
labeled

training data,
as in HMM

construct a
histogram of

observed
feature
lengths
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Maximum Likelihood vs. Conditional Maximum Likelihood
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maximizing Pe, Pt,
Pd separately
maximizes the
entire expression

maximizing Pe, Pt,
Pd separately
DOES NOT
maximize the
entire expression

∴ MLE≠CML



Discriminative Training of GHMMs
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argmax
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Discriminative Training of GHMMs
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• GHMMs generalize HMMs by allowing each state to emit a
subsequence rather than just a single symbol

• Whereas HMMs model all feature lengths using a geometric
distribution, coding features can be modeled using an arbitrary
length distribution in a GHMM

• Emission models within a GHMM can be any arbitrary
probabilistic model (“submodel abstraction”), such as a neural
network or decision tree

• GHMMs tend to have many fewer states => simplicity &
modularity

• When used for parsing sequences, HMMs and GHMMs
should be trained discriminatively, rather than via MLE, to
achieve optimal predictive accuracy

Summary


