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The Utility of Evolutionary Models

Evolutionary sequence models make use of the assumption that narural
selection operates more strongly on some genomic features than others
(1.e., functional versus non-functional DNA elements), resulting in a
detectable bias 1n sequence conservation for the features of interest.
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More generally, conservation patterns may differ between /evels of

DNA organization (i.e., amino acids in coding segments, versus
individual nucleotides in conserved noncoding elements). Duke



Recall; Multivariate HMMs

\
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CCATATAATCCCAGGCTCCGCTTCA A ey
/QJGATATCATCAG%TGCTACGTATCT —> | Ntracks

®

ACATAATATOCGAGGCTCCGCTTCG /ey

J

7‘\ single emission from a single state

Each state emits N residues, one per track—i.e., a column of a
multiple alignment.

Thus, each state must have a model for the joint distribution of
the tracks (to represent emission probabilities).

Q: how might we model dependencies between tracks?
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Non-independence of Sequences

Due to their common ancestry, genomic sequences for related taxa are
not independent. We can control for that non-independence by explicitly
modeling their dependence structure using a phylogenetic tree:

© leaf taxon =
observable elespiza cantans
( ) e
@ ancestral taxon Oreomystis baird ' -
(unobservable)
\
Hemignathus virens
branch length: &
proportional to >0
divergence (or time) us € ‘ “ N
E - “clade
./
113 ”
root”®
Himatione sanguinea ’“taxon”
[ G-

Branch lengths represent
evolutionary distance, which
conflates the distinct
phenomena of elapsed time
and substitution rate (as well
as selection and drift).

We will see later that a phylogenetic tree (or “phylogeny”) can be
interpreted as a special type of Bayesian network, in which sequence
conservation probabilities are expressed as a function of the branch

lengths.
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PhyloHMMs

A PhyloHMM 1s a discrete multivariate HMM 1n which each state g, has
an associated evolution model 1, describing the expected rates and
patterns of evolution in the class of features represented by that state.

TCGC ATACGA. . .
X = TTGG GTGGGT. - - >
AGCA CCGCAA. . .

(Siepel et al., 2005) UNIVERSTT



Evaluating the Emission Probabillity

alignment
AL L. human
.B. .. chimp
.C. .. mouse
.D... rat

Bayesian network

P(G)

G
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}observables

P(A,B,C,D)= EP(G)P(E\G)P(A\E)P(B\E)P(F\G)P(C\F)P(D\F)

P(observables) =
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P(root) HP(V‘ parent(v))

nonroot
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A Recursion for the Emission Likelihood

The likelihood can be computed using a recursion known as
Felsenstein § pruning algorithm:
o(u,a) if u 1s a leaf

L (q) =-
() H E L (b)P(c =blu=a) otherwise

cE b&x
L children(u)

=P(descendents of ulu=a).

P(c=blu=a) = probability of observing / in the child, given that we observe a in the
parent. We can model this using a matrix of substitution probabilities, parameterized
by the evolutionary time 7 that has passed between the ancestor and descendant taxa:

descendant
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Substitution Matrix vs. Rate Matrix

There is an important distinction between a substitution matrix
and an instantaneous rate matrix.

Q = Instantaneous rate matrix. Gives instantaneous
rates of substitutions (not parameterized by time).

Given Q and a set of phylogeny branch lengths
{t;}, we can compute a substitution matrix P(z)
for each branch...
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One Q, Many P(t)'s

kangaroo

P(r) = e
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Continuous-time Markov Chains (CTMCs)

Substitution models are typically based on
continuous-time Markov chains. The

Markov property for CTMCs states that: P +5)=P@)P(s)

dP(t) . PU+AN-P() . POP(A)- P(H1 ) We can derive an
dt a0 At a0 At instantaneous rate matrix
P lim 2D ~PO) _p o > Q from P(z), where we
=0 éﬂ y make use of the fact that
does not depend on ¢ y P(O):I .
The solution to this e nn )
. . . . Ql‘ Q t Q t
differential equation is: P(®) =€~ = Z b [+1Q+ I
n=0 g

e (the “matrix exponential”) denotes a Taylor expansion, which we

can solve via spectral (eigenvector) decomposition:
A, ] i
th,

Q=G )Lz... G‘1|:>P(t)=(} ¢ . G
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Desirable Properties of Substitution Matrices

Reversibility: (“detailed balance”)

v, (%P, (= P,(0)

where 7, 1s the equilibrium frequency of base i.

Transition/Transversion Discrimination:

Using different parameters for transition and transversion rates.

Transitions: purine<>purine, } Transitions
pyrimidineepyrimidine (?I X If Transversions
Transversions. purine<s>pyrimidine C4——> T Transitions
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Some Common Forms for Q

JUkeS'Cantor: Kimura: Felsenstein:
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Hasegawa, Kishino, Yano: General reversible model:
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Multiple Alignment
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Recall: Pairwise alignment with PHMMSs
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Pair HMM =» Triple HMM = Quadruple HMM ?

for 100bp sequences...

b pair HMM

aligns 2 species

aligns 3 species

quadruple HMM
aligns 4 species

—~ =

— B
(Holmes & Bruno,2001)

Sequences Cells Memory
2 9801 40k
3 970,299 3.7M
4 96,059,601 366M
5 9,509,900,499 35G
6 94IE+|| 34T
7 9.32E+13 3397
8 9.28E+15 33P
9 9.14E+17 3.2E
10 (904419 ) 314E

#gallons of
water in the

Pacific ocean
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Progressive Alignment: One Pair at a Time

-AAGTAGCATACG--GGCA-ATT
-AACT--CATACG--CCCAGATT
T-AGT--CATACGGG--CA-ATC
T-AGT--CGTATGGGGGCA-GTT

e

AAGTAGCATACGGGCA-ATT
AACT--CATACGCCCAGATT

N\

TAGTCATACGGG--CAATC
TAGTCGTATGGGGGCAGTT

AACTCATACGCCCAGATT ///////

AAGTAGCATACGGGCAATT

TAGTCATACGGGCAATC

>~ profile-to-profile
alignment

> sequence-to-sequence
alignment

TAGTCGTATGGGGGCAGTT

* First, align the leaves of the tree (using a Pair HMM)

* Then align ancestral taxa, using either a “consensus” sequence
for ancestors, or averaging over all pairs of leaf residues

A more principled approach: model the ancestral sequences
explicitly, using a probabilistic evolutionary model... Duke |



Networks of Residues

Problem:
Align the sequences ABC, DE, FG, and HI.

Solution:

AB-C-
_D_E_
__FG_
-——HI

The multiple alignment problem is precisely the problem
of inferring the network of residue homologies—i.e., the
evolutionary history of each base.
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Building the Network

ABC DE FG HI Suke
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Building the Network
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Building the Network
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Building the Network
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Building the Network

J K

ABC DE FG HI Suke
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Building the Network
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Building the Network

gm;&sg
JiE el

ABC DE FG HI Duke
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Building the Network
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Building the Network
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Evaluating Emission Probabilities

P(B,D,G,H) = EP(X)P(K|X)P(B|K)P(D|K)P(N|X)P(G|N)P(H|N)

X ,K,N

( )
P(observables) = E P(root) HP(V‘ parent(v))

unobservables nonroot )

\ v
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Sampling Alignments

O = a sequence S

[ = (B,H), a “Branch-HMM” (transducer) B
describing the evolutionary process whereby
the child evolves from the parent, and the

actual indel history H which 1s a specific
realization of this process (a “draw™)

Sampling of alignments proceeds by sampling pairwise “branch
alignments” (or “indel histories”) H that live within the yellow
squares. An indel history is simply a path through a Pair HMM.

Sampling branch alignments 1s simple: just sample from a PHMM via
Forward or Backward.:

Bi+1,j+1,ykPt(yk‘Yk—l)Pe(Si,l’Sj’z‘yk) lfy EQ
k M
‘ L, ]5Y k-t ‘
. B ... P(Y,[Y,_.DP.(=5.,l¥,) .
P(yk\yk_pl,J,SpSz) _ ) Dy, k| k-1 j2lYk ify, €0,
L,J.Y k-1
B, .. P DP(s,,— ,
i+1,7.y (yiyk 1) ( A yk) lfyk EQD
L J Y Duke




Posterior Alignment Matrix

sequence 2...

sequence 1...

pixel intensity =
posterior
probability of a
match in that
cell

(posterior
probability:
conditional on
the full input
sequences)
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Banding: Reduce the Search Space




Block Rearrangements are a Problem!

The simple T / T /

case.

T / TA”S'O%‘”O” T / Inversion

- — S 5

Iz 7

3 > Duke
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» Optimal MSA computation is intractible in the general case

* Progressive alignment is more tractible, but is greedy

* [terative refinement attempts to undo greedy decisions

* PairHMM'’s provide a principled way to perform pairwise steps
» Felsenstein’s algorithm computes likelihoods on phylogenies
» Substitution models can use continuous-time Markov chains

« Large-scale rearrangements are a problem

* Banding can improve alignment speed
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