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Part I 
Evolutionary Sequence Models 



The Utility of Evolutionary Models 
Evolutionary sequence models make use of the assumption that natural 
selection operates more strongly on some genomic features than others 
(i.e., functional versus non-functional DNA elements), resulting in a 
detectable bias in sequence conservation for the features of interest. 

More generally, conservation patterns may differ between levels of 
DNA organization (i.e., amino acids in coding segments, versus 
individual nucleotides in conserved noncoding elements). 

(Siepel et al., 2005) 



push 

... 

CCATATAATCCCAGGCTCCGCTTCA 

AGATATCATCAGATGCTACGTATCT 

ACATAATATCCGAGGCTCCGCTTCG 

Each state emits N residues, one per track—i.e., a column of a 
multiple alignment. 

Thus, each state must have a model for the joint distribution of 
the tracks (to represent emission probabilities). 

Q: how might we model dependencies between tracks? 

N tracks 

single emission from a single state 



Non-independence of Sequences 
Due to their common ancestry, genomic sequences for related taxa are 
not independent. We can control for that non-independence by explicitly 
modeling their dependence structure using a phylogenetic tree: 

We will see later that a phylogenetic tree (or “phylogeny”) can be 
interpreted as a special type of Bayesian network, in which sequence 
conservation probabilities are expressed as a function of the branch 
lengths. 

Branch lengths represent 
evolutionary distance, which 
conflates the distinct 
phenomena of elapsed time 
and substitution rate (as well 
as selection and drift). 



PhyloHMMs 
A PhyloHMM is a discrete multivariate HMM in which each state qi has 
an associated evolution model ψi describing the expected rates and 
patterns of evolution in the class of features represented by that state. 

(Siepel et al., 2005) 



Evaluating the Emission Probability 
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The likelihood can be computed using a recursion known as 
Felsenstein’s pruning algorithm: 
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P(c=b|u=a) = probability of observing b in the child, given that we observe a in the 
parent.  We can model this using a matrix of substitution probabilities, parameterized 
by the evolutionary time t that has passed between the ancestor and descendant taxa: 

A Recursion for the Emission Likelihood 
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P(t) 

Q 

Substitution Matrix vs. Rate Matrix 
There is an important distinction between a substitution matrix 
and an instantaneous rate matrix. 

= Substitution matrix.  Gives the probabilities of 
substitutions for a specific branch length, t (“time”). 

= Instantaneous rate matrix.  Gives instantaneous 
rates of substitutions (not parameterized by time). 

Given Q and a set of phylogeny branch lengths 
{ti}, we can compute a substitution matrix P(ti) 
for each branch... 



One Q, Many P(t)’s 
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Substitution models are typically based on 
continuous-time Markov chains. The 

Markov property for CTMCs states that: )()()( stst PPP =+
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We can derive an 
instantaneous rate matrix 
Q from P(t), where we 
make use of the fact that 
P(0)=I. 
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eQt (the “matrix exponential”) denotes a Taylor expansion, which we 
can solve via spectral (eigenvector) decomposition: 
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The solution to this 
differential equation is: 



Reversibility: 

                     ∀ij(πiPij(t)=πjPji(t)) 

where πi is the equilibrium frequency of base i. 

Desirable Properties of Substitution Matrices 

Transition/Transversion Discrimination: 

Using different parameters for transition and transversion rates. 

Transitions:    purine↔purine,  

Transversions:   purine↔pyrimidine 

 pyrimidine↔pyrimidine  

(“detailed balance”) 
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Jukes-Cantor: Kimura: Felsenstein: 

Hasegawa, Kishino, Yano: General reversible model: 

Some Common Forms for Q 

these assume uniform equilibrium frequencies! 



Part II 
Multiple Alignment 



Recall: Pairwise alignment with PHMMs 

•  Emission probabilities assess 
similarity between aligned residues 

•  Transition probabilities can be used 
to penalize gaps 

•  Viterbi decoding finds the optimal 
alignment 
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Pair HMM  Triple HMM  Quadruple HMM ? 

pair HMM 

triple HMM 

quadruple HMM 

(Holmes & Bruno, 2001) 

aligns 2 species 

aligns 3 species 

aligns 4 species 

#gallons of 
water in the 
Pacific ocean 

for 100bp sequences... 



Progressive Alignment: One Pair at a Time 

sequence-to-sequence 
alignment  

profile-to-profile 
alignment 

-AAGTAGCATACG--GGCA-ATT 
-AACT--CATACG--CCCAGATT 
T-AGT--CATACGGG--CA-ATC 
T-AGT--CGTATGGGGGCA-GTT 

AAGTAGCATACGGGCA-ATT 
AACT--CATACGCCCAGATT 

TAGTCATACGGG--CAATC 
TAGTCGTATGGGGGCAGTT 

AAGTAGCATACGGGCAATT 

AACTCATACGCCCAGATT 

TAGTCATACGGGCAATC 

TAGTCGTATGGGGGCAGTT 

•  First, align the leaves of the tree (using a Pair HMM) 

•  Then align ancestral taxa, using either a “consensus” sequence 
for ancestors, or averaging over all pairs of leaf residues 

A more principled approach: model the ancestral sequences 
explicitly, using a probabilistic evolutionary model... 
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Networks of Residues 

The multiple alignment problem is precisely the problem 
of inferring the network of residue homologies—i.e., the 
evolutionary history of each base. 

Problem: 
Align the sequences ABC, DE, FG, and HI. 

Solution: 
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Building the Network 
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Building the Network 
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Evaluating Emission Probabilities 
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= a sequence S 

= (B,H), a “Branch-HMM” (transducer) B 
describing the evolutionary process whereby 
the child evolves from the parent, and the 
actual indel history H which is a specific 
realization of this process (a “draw”) 

Sampling Alignments 

Sampling of alignments proceeds by sampling pairwise “branch 
alignments” (or “indel histories”) H that live within the yellow 
squares.  An indel history is simply a path through a Pair HMM. 

Sampling branch alignments is simple: just sample from a PHMM via 
Forward or Backward: 
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Posterior Alignment Matrix 
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pixel intensity = 
posterior 
probability of a 
match in that 
cell 

(posterior 
probability: 
conditional on 
the full input 
sequences) 



Banding: Reduce the Search Space 



Block Rearrangements are a Problem! 

Translocation Inversion 

Duplication 

The simple 
case: 



•  Optimal MSA computation is intractible in the general case 

•  Progressive alignment is more tractible, but is greedy 

•  Iterative refinement attempts to undo greedy decisions 

•  PairHMM’s provide a principled way to perform pairwise steps 

•  Felsenstein’s algorithm computes likelihoods on phylogenies 

•  Substitution models can use continuous-time Markov chains 

•  Large-scale rearrangements are a problem 

•  Banding can improve alignment speed 

Summary 


