
CBB 261

B. Majoros

Formal Languages

A formal language is simply a set of strings (i.e., sequences). That set
may be infinite.

Let M be a model denoting a language. If M is a generative model
such as an HMM or a grammar, then L(M) denotes the language
generated by M.

If M is an acceptor model such as a finite automaton, then L(M)
denotes the language accepted by M.

When all the parameters of a stochastic generative model are known,
we can ask:

 “What is the probability that model M will generate string S?”

which we denote:

 P(S | M)

Recall: The Chomsky Hierarchy

Examples:
 * HMM-based gene-finders assume DNA is regular
 * secondary structure prediction assumes RNA is context-free
 * RNA pseudoknots are context-sensitive

regular languages

context free languages

context sensitive languages

recursive languages

HMM’s / reg. exp.’s

SCFG’s / PDA’s

Linear-bounded TM’s

Halting TM’s

recursively enumerable languages Turing machines

* each class is a subset of the next higher class in the hierarchy

all languages

Context-free Grammars (CFG’s)
A context-free grammar is a generative model denoted by a 4-tuple:	

G = (V, α, S, R) 	

where:	

	
α is a terminal alphabet, (e.g., {a, c, g, t})	

	
V is a nonterminal alphabet, (e.g., {A, B, C, D, E, ...})	

	
S∈V is a special start symbol, and 	

	
R is a set of rewriting rules called productions.	

Productions in R are rules of the form:	

X → λ	

for X∈V, λ∈(V∪α)*; such a production denotes that the nonterminal
symbol X may be rewritten by the expression λ, which may consist of
zero or more terminals and nonterminals.	

A Simple Example
As an example, consider G=(VG, α, S, RG), for VG={S, L, N}, α={a,c,g,t}, and RG the
set consisting of:	

One possible derivation using this grammar is:	

S	

aSt

acSgt
acgScgt

acgtSacgt
acgtLacgt

acgtNNNNacgt
acgtaNNNacgt
acgtacNNacgt
acgtacgNacgt
acgtacgtacgt	

S → a S t	

S → c S g	

S → g S c
S → t S a
S → L 	

L → N N N N
N → a
N → c
N → g
N → t

S → L	

L → N N N N
N → a | c | g | t

S → a S t	

S → t S a	

S → c S g	

S → g S c	

Derivations
Suppose a CFG G has generated a terminal string x∈α*. A derivation
denotes a single way by which G may have generated x. For a grammar
G and a string x, there may exist multiple distinct derivations.	

A derivation (or parse) consists of a series of applications of
productions from R, beginning with the start symbol S and ending with
a terminal string x:	

S ⇒ s1 ⇒ s2 ⇒ s3 ⇒ ⇒ x	

We can denote this more compactly as: S⇒*x. Each string si in a
derivation is called a sentential form, and may consist of both terminal
and nonterminal symbols: si∈(V∪α)*. Each step in a derivation must be
of the form:	

wXz ⇒ wλz	

for w, z∈(V∪α)*, where X→λ is a production in R; note that w and z
may be empty (ε denotes the empty string).	

Leftmost Derivations

A leftmost derivation is one in which at each step the leftmost
nonterminal in the current sentential form is the one which is
rewritten: 	

S ⇒ ⇒ abXdYZ ⇒ abxxxdYZ ⇒ abxxxdyyyZ ⇒ abxxxyzdyyyzzz	

For many applications, it is not necessary to restrict one’s attention to
only the leftmost derivations. In that case, there may exist multiple
derivations which can produce the same exact string.	

However, when we get to stochastic CFG’s, it will be convenient to
assume that only leftmost derivations are valid. This will simplify
probability computations, since we don’t have to model the process of
stochastically choosing a nonterminal to rewrite. Note that doing this
does not reduce the representational power of the CFG in any way; it
just makes it easier to work with.	

Context-freeness
The “context-freeness” of context-free grammars is imposed by the
requirement that the l.h.s of each production rule may contain only a
single symbol, and that symbol must be a nonterminal:	

X → λ	

for X∈V, λ∈(V∪α)*. That is, X is a nonterminal and λ is any (possibly
empty) string of terminals and/or nonterminals. Thus, a CFG cannot
specify context-sensitive rules such as:	

wXz → wλz	

which states that nonterminal X can be rewritten by λ only when X
occurs in the local context wXz in a sentential form. Such productions
are possible in context-sensitive grammars (CSG’s).	

The advantage of CFG’s over HMM’s lies in their ability to model arbitrary runs of
matching pairs of “palindromic” elements, such as nested pairs of parentheses:	

(((((((())))))))	

where each opening parenthesis must have exactly one matching closing parenthesis on
the right. When the number of nested pairs is unbounded (i.e., a matching close
parenthesis can be arbitrarily far away from its open parenthesis), a finite-state model
such as a DFA or an HMM is inadequate to enforce the constraint that all left elements
must have a matching right element. 	

In contrast, the modeling of nested pairs of elements can be readily achieved in a CFG
using rules such as X→(X). A sample derivation using such a rule is:	

X ⇒ (X) ⇒ ((X)) ⇒ (((X))) ⇒ ((((X)))) ⇒ (((((X)))))	

An additional rule such as X→ε is necessary to terminate the recursion.	

Context-free Versus Regular

Limitations of CFG’s
One thing that CFG’s can’t model is the matching of arbitrary runs of matching
elements in the same direction (i.e., not palindromic):	

......abcdefg.......abcdefg.....

In other words, languages of the form:	

wxw	

for strings w and x of arbitrary length, cannot be modeled using a CFG. 	

More relevant to ncRNA prediction is the case of pseudoknots, which also cannot be
recognized using standard CFG’s:	

....abcde....rstuv.....edcba.....vutsr....

The problem is that the matching palindromes (and the regions separating them) are
of arbitrary length.	

Q: why isn’t this very
relevant to RNA
structure prediction?

Hint: think of the
directionality of paired
strands.

Stochastic CFG’s (SCFG’s)
A stochastic context-free grammar (SCFG) is a CFG plus a probability
distribution on productions:	

G = (V, α, S, R, Pp) 	

where Pp : R , and probabilities are normalized at the level of each
l.h.s. symbol X:

∀[∑ Pp(X→λ)=1]
 X∈V X→λ

Thus, we can compute the probability of a single derivation S⇒*x by
multiplying the probabilities for all productions used in the derivation:

∏ i P(Xi→λi)	

We can sum over all possible (leftmost) derivations of a given string x
to get the probability that G will generate x at random:

P(x | G) = ∑ P(S⇒j
*x | G).

 j

A Simple Example
As an example, consider G=(VG, α, S, RG, PG), for VG={S, L, N}, α={a,c,g,t}, and RG
the set consisting of:	

S → a S t | t S a | c S g | g S c | L	

L → N N N N

N → a | c | g | t

where ∀λPG(S→λ)=0.2, PG(L→NNNN)=1, and ∀λPG(N→λ)=0.25. Then the
probability of the sequence acgtacgtacgt is given by:	

P(acgtacgtacgt) =	

P(S ⇒ aSt ⇒ acSgt ⇒ acgScgt ⇒ acgtSacgt ⇒	

acgtLacgt ⇒ acgtNNNNacgt ⇒ acgtaNNNacgt ⇒	

acgtacNNacgt ⇒ acgtacgNacgt ⇒ acgtacgtacgt) =	

0.2 × 0.2 × 0.2 × 0.2 × 0.2 × 1 × 0.25 × 0.25 × 0.25 × 0.25 = 1.25×10-6	

because this sequence has only one possible leftmost derivation under grammar G.	

If multiple derivations were possible, we would use the Inside Algorithm.	

(P=0.2)

(P=1.0)

(P=0.25)

Implementing Zuker in an SCFG

i is unpaired j is unpaired
i pairs with j

. . .

loops
stems, bulges,
internal loops multiloops

Rivas & Eddy 2000
(Bioinformatics 16:583-605)

i+1 pairs with j-1

Implementing Zuker in an SCFG

Rivas & Eddy 2000
(Bioinformatics 16:583-605)

The Parsing Problem

Two questions for a CFG:

1)  Can a grammar G derive string x?

2)  If so, what series of productions would be used during
the derivation? (there may be multiple answers!)

Additional questions for an SCFG:

1)  What is the probability that G derives string x?

2)  What is the most probable derivation of x via G?

(likelihood)

Chomsky Normal Form (CNF)
Any CFG which does not derive the empty string (i.e., ε ∉ L(G)) can be converted into
an equivalent grammar in Chomsky Normal Form (CNF). A CNF grammar is one in
which all productions are of the form:	

X → Y Z	

or:	

X → a

for nonterminals X, Y, Z, and terminal a.	

Transforming a CFG into CNF can be accomplished by appropriately-ordered
application of the following operations:	

• eliminating useless symbols (nonterminals that only derive ε)	

• eliminating null productions (X→ε)	

• eliminating unit productions (X→Y)	

• factoring long rhs expressions (A→abc factored into A→aB, B→bC, C→c)	

• factoring terminals (A→cB is factored into A→CB, C→c)	

(see, e.g., Hopcroft & Ullman, 1979).	

Non-CNF:	

S → a S t | t S a | c S g | g S c | L	

L → N N N N
N → a | c | g | t

CNF - Example

CNF:	

S → A ST | T SA | C SG | G SC | N L1 	

SA → S A	

ST → S T	

SC → S C	

SG → S G	

L1 → N L2	

L2 → N N	

N → a | c | g | t
A → a	

C → c	

G → g	

T → t	

Disadvantages of CNF: (1) more nonterminals & productions, (2) more convoluted relation to problem domain (can be
important when implementing posterior decoding)

Advantages: (1) easy implementation of inference algorithms

The CYK Parsing Algorithm

j

k

i
(i, j)

i

j

(i, k)

(k+1, j)

Cell (i, j) contains all the nonterminals X
which can derive the entire subsequence:
actagctatctagcttacggtaatcgcatcgcgc.

(k+1, j) contains only those nonterminals
which can derive the red substring.

(i, k) contains only those nonterminals
which can derive the green
substring.

(0, n-1)

initialization:

 X→x (diagonal)

inductive:

 A→BC (for all A,
BC, and k)

termination:

 is S∈D0, n-1?

A

C

B

S?

The CYK Parsing Algorithm (CFG’s)
Given a grammar G = (V, α, S, R) in CNF, we initialize a DP matrix D such that: 	

∀ 0≤i<n Di,i ={A | A→xi ∈ R}	

for the input sequence I = x0 x1... xn-1. The remainder of the DP matrix is then
computed row-by-row (left-to-right, top-to-bottom) so that: 	

Di, j ={A | A→BC ∈ R, for some B∈Di,k and C∈Dk+1, j, i≤k<j}.	

for 0≤i<j<n. By induction, X∈Di, j iff X⇒*xi xi+1... xj. Thus, I∈L(G) iff S∈D0, n-1.	

We can obtain a derivation S⇒*I from the DP matrix if we augment the above
construction so as to include traceback pointers from each nonterminal A in a cell
cellA to the two cells cellB and cellC corresponding to B and C in the production
A→BC used in the above rule for computing Di, j. Starting with the symbol S in cell
(0, n-1), we can recursively follow the traceback pointers to identify the series of
productions for the reconstructed derivation.	

(Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965)

Modified CYK for SCFG’s (“Inside Algorithm”)
CYK can be easily modified to compute the probability of a string.

We associate a probability with each nonterminal in Di, j , as follows:

1)  For each nonterminal A we multiply the probabilities associated
with B and C when applying the production A→BC (and also
multiply by the probability attached to the production itself)

2)  We sum the probabilities associated with different productions for A
and different values of the “split point” k

The probability of the input string is then given by the probability
associated with the start symbol S in cell (0, n-1).

If we instead want the single highest-scoring parse, we can simply
perform an argmax operation rather than the sums in step #2.

The Inside Algorithm
Recall that for the forward algorithm we defined a forward variable f(i, j). Similarly, for
the inside algorithm we define an inside variable α(i, j, X):

α(i, j, X) = P(X⇒*xi ... xj | X)

which denotes the probability that nonterminal X will derive subsequence xi... xj.

Computing this variable for all integers i and j and all nonterminals X constitutes the
inside algorithm:
for i=0 up to L-1 do
 foreach nonterminal X do
 α(i,i,X)=P(X→xi);
for i=L-2 down to 0 do
 for j=i+1 up to L-1 do
 foreach nonterminal X do
 α(i,j,X)=∑Y∑Z∑k=i..j-1 P(X→YZ)α(i,k,Y)α(k+1,j,Z);

Note that P(X→YZ)=0 if X→YZ is not a valid production in the grammar.

The probability P(x|G) of the full input sequence x of length L can then be found in the
final cell of the matrix: α(0, L-1, S) (the “corner cell”). Reconstructing the most
probable derivation (“parse”) can be done by modifying this algorithm to (1) compute
max’s instead of sums, and (2) to keep traceback pointers as in Viterbi.

j

k

i (i, j)
(i, k)

(k+1, j)

(0, L-1)

X

Z

Y

€

time =O(L3N 3)
i

j

Training an SCFG

Two common methods for training an SCFG:

1)  If parses are known for the training sequences, we can simply count
the number of times each production occurs in the training parses
and normalize these counts into probabilities. This is analogous to
“labeled sequence training” of an HMM (i.e., when each symbol in
a training sequence is labeled with an HMM state).

2)  If parses are NOT known for the training sequences, we can use an
EM algorithm similar to the Baum-Welch algorithm for HMMs. The
EM algorithm for SCFGs is called Inside-Outside.

Y

S

Y

Recall: Forward-Backward
CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA

Inside-Outside uses a similar trick to estimate the
expected number of times each production is used:

€

time =O(L3N 3)

€

time =O(L3N 3)

€

time =O(LN 2)

€

time =O(LN 2)L=length, N=#states

L=length, N=#nonterminals

Inside vs. Outside

α(i, j,Y) = P(Y⇒*CGCTCGACTATTATATCAGTCT | Y)
β (i, j,Y) = P(S ⇒* CATCGTATCGCGCGATATCTCGATCATYACTTCAGATCTAT)
α(i, j, Y) β (i, j,Y) =

 P(S⇒* CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCAGTCTACTTCAGATCTAT ,
with the red subsequence being generated by Y)

α(i, j, Y) β (i, j,Y)
α(0, L-1, S) = posterior probability P(Y,i,j|full sequence)

(def. of CFG: inside seq. is cond. indep. outside seq., given Y)

Y

S

Y

The Outside Algorithm

For the outside algorithm we define an outside variable β(i, j, Y):

β (i, k,Y) = P(S ⇒* x0..xi-1 Y xk+1..xL-1)

which denotes the probability that the start symbol S will derive the sentential form
x0..xi-1 Y xk+1..xL-1 (i.e., that S will derive some string having prefix x0... xi-1 and suffix
xk+1... xL-1 and that the region between will be derived through nonterminal Y).

β(0,L-1,S)=1;
foreach X≠S do β(0,L-1,X)=0;
for i=0 up to L-1 do
 for j=L-1 down to i do
 foreach nonterminal X do
 if β(i,j,X) undefined then
 β(i,j,X)=∑Y∑Z∑k=j+1..L-1 P(Y→XZ)α(j+1,k,Z)β(i,k,Y)+
 ∑Y∑Z∑k=0..i-1 P(Y→ZX)α(k,i-1,Z)β(k,j,Y);

S

Y X

Z

€

time =O(L3N 3)

i

j

k

i

j

S

Y X

Z

i

j

k

S
Y
X

Z
i

j

k

The Two Cases in the Outside Recursion

Y→XZ Y→ZX
In both cases we compute β(X) in terms of β(Y) and α(Z),

summing over all possible positions of Y and Z:

Inside-Outside Parameter Estimation

€

Pnew (X→YZ) =
E(X→YZ x)

E(X x)

 =

β(i, j,X)P(X→YZ)α(i,k,Y)α(k +1, j,Z)
k=i

j−1

∑
j=i+1

L−1

∑
i=0

L−2

∑

β(i, j,X)α(i, j,X)
j=i

L−1

∑
i=0

L−1

∑

€

Pnew (X→ a) =
E(X→ a x)
E(X x)

 =

δkron(xi ,a)β(i, i,X)P(X→ a)
i=0

L−1

∑

β(i, j,X)α(i, j,X)
j=i

L−1

∑
i=0

L−1

∑

EM-update equations:

(see Durbin et al., 1998, section 9.6)

Posterior Decoding for SCFG’s

€

P(Xi , j ⇒Yi ,kZk+1, j x) =
β(i, j,X)P(X→YZ)α(i,k,Y)α(k +1, j,Z)

α(0,L −1,S)

€

P(X ⇒ xi x) =
β(i,i,X)P(X→ xi)

α(0,L −1,S)

“What is the probability that nonterminal X generates the subsequence xi ... xj via
production X→YZ, with Y generating xi ... xk and Z generating xk+1 ... xj?”

“What is the probability that nonterminal X generates xi (in some particular
sequence)?”

€

P(Fi , j x) =
some product of α’s and β’s (and other things)

α(0,L −1,S)

“What is the probability that a structural feature of type F will occupy sequence
positions i through j?”

What about Pseudoknots?

“Among the most prevalent RNA structures is a motif known as the pseudoknot.” (Staple & Butcher, 2005)

Context-Sensitive Grammar for Pseudoknots
L(G) = { x y xr yr | x ∈α*, y ∈α* }

S → L X R

X → a X t | t X a | c X g | g X c | Y	

Y → a A Y | c C Y | g G Y | t T Y | ε	

A a → a A , A c → c A , A g → g A , A t → t A
C a → a C , C c → c C , C g → g C , C t → t C
G a → a G , G c → c G , G g → g G , G t → t G
T a → a T , T c → c T , T g → g T , T t → t T

A R → t R , C R → g R , G R → c R , T R → a R

L a → a L , L c → c L , L g → g L , L t → t L , L R → ε

generate x and xr	

erase extra “markers”

reverse-complement second y at
end of sequence	

propagate encoded copy of y
to end of sequence	

generate y and encoded 2nd copy	

place markers at left/right ends	

Sliding Windows to Find ncRNA Genes
Given a grammar G describing ncRNA structures and an input sequence Z, we can
slide a window of length L across the sequence, computing the probability P(Zi,i+L-1|
G) that the subsequence Zi,i+L-1 falling within the current window could have been
generated by grammar G.

Using a likelihood ratio:

R = P(Zi,i+L-1|G) / P(Zi,i+L-1|background),

we can impose the rule that any subsequence having a score R>>1 is likely to contain
a ncRNA gene (where the background model is typically a Markov chain).

atcgatcgtatcgtacgatcttctctatcgcgcgattcatctgctatcattatatctattatttcaaggcattcag
sliding window

R = 0.99537 (summing over
all possible
secondary
structures under
the grammar)

•  An SCFG is a generative model utilizing production rules to
generate strings

• SCFG’s are more powerful than HMM’s because they can
model arbitrary runs of paired nested elements, such as base-
pairings in a stem-loop structure. They can’t model
pseudoknots (though context-sensitive grammars can)

•  Thermodynamic folding algorithms can be simulated in an
SCFG

• The probability of a string S being generated by an SCFG G
can be computed using the Inside Algorithm

•  Given a set of productions for a SCFG, the parameters can
be estimated using the Inside-Outside (EM) algorithm

Summary

