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Formal Languages 

A formal language is simply a set of strings (i.e., sequences). That set 
may be infinite. 

Let M be a model denoting a language.  If M is a generative model 
such as an HMM or a grammar, then L(M) denotes the language 
generated by M. 

If M is an acceptor model such as a finite automaton, then L(M) 
denotes the language accepted by M. 

When all the parameters of a stochastic generative model are known, 
we can ask:  

  “What is the probability that model M will generate string S?” 

which we denote: 

   P(S | M) 



Recall: The Chomsky Hierarchy 

Examples: 
 * HMM-based gene-finders assume DNA is regular 
 * secondary structure prediction assumes RNA is context-free 
 * RNA pseudoknots are context-sensitive 

regular languages 

context free languages 

context sensitive languages 

recursive languages 

HMM’s / reg. exp.’s 

SCFG’s / PDA’s 

Linear-bounded TM’s 

Halting TM’s 

recursively enumerable languages Turing machines 

* each class is a subset of the next higher class in the hierarchy 

all languages 



Context-free Grammars (CFG’s) 
A context-free grammar is a generative model denoted by a 4-tuple:	


G = (V, α, S, R) 	

where:	


	
α is a terminal alphabet, (e.g., {a, c, g, t} )	

	
V is a nonterminal alphabet, (e.g., {A, B, C, D, E, ...} )	

	
S∈V is a special start symbol, and 	

	
R is a set of rewriting rules called productions.	


Productions in R are rules of the form:	


X → λ	


for X∈V, λ∈(V∪α)*; such a production denotes that the nonterminal 
symbol X may be rewritten by the expression λ, which may consist of 
zero or more terminals and nonterminals.	




A Simple Example 
As an example, consider G=(VG, α, S, RG), for VG={S, L, N}, α={a,c,g,t}, and RG the 
set consisting of:	


One possible derivation using this grammar is:	


S	

aSt 

acSgt 
acgScgt 

acgtSacgt 
acgtLacgt 

acgtNNNNacgt 
acgtaNNNacgt 
acgtacNNacgt 
acgtacgNacgt 
acgtacgtacgt	


S → a S t	

S → c S g	

S → g S c 
S → t S a 
S → L 	

L → N N N N 
N → a 
N → c 
N → g 
N → t 

S → L	

L → N N N N 
N → a | c | g | t 

S → a S t	

S → t S a	

S → c S g	

S → g S c	




Derivations 
Suppose a CFG G has generated a terminal string x∈α*. A derivation 
denotes a single way by which G may have generated x. For a grammar 
G and a string x, there may exist multiple distinct derivations.	


A  derivation  (or  parse)  consists  of  a  series  of  applications  of 
productions from R, beginning with the start symbol S and ending with 
a terminal string x:	


S ⇒ s1 ⇒ s2 ⇒ s3 ⇒  ⇒ x	

We can  denote  this  more  compactly  as:  S⇒*x.   Each  string  si  in  a 
derivation is called a sentential form, and may consist of both terminal 
and nonterminal symbols: si∈(V∪α)*. Each step in a derivation must be 
of the form:	


wXz ⇒ wλz	


for w, z∈(V∪α)*, where X→λ is a production in R; note that w and z 
may be empty (ε denotes the empty string).	




Leftmost Derivations 

A leftmost  derivation  is  one  in  which  at  each  step  the  leftmost 
nonterminal  in  the  current  sentential  form  is  the  one  which  is 
rewritten: 	


S ⇒  ⇒ abXdYZ ⇒ abxxxdYZ ⇒ abxxxdyyyZ ⇒ abxxxyzdyyyzzz	


For many applications, it is not necessary to restrict one’s attention to 
only the leftmost derivations.  In that case, there may exist multiple 
derivations which can produce the same exact string.	


However, when we get to stochastic CFG’s, it will be convenient to 
assume that  only leftmost  derivations are valid.   This will  simplify 
probability computations, since we don’t have to model the process of 
stochastically choosing a nonterminal to rewrite.  Note that doing this 
does not reduce the representational power of the CFG in any way; it 
just makes it easier to work with.	




Context-freeness 
The  “context-freeness”  of  context-free  grammars  is  imposed  by  the 
requirement that the l.h.s of each production rule may contain only a 
single symbol, and that symbol must be a nonterminal:	


X → λ	


for X∈V, λ∈(V∪α)*. That is, X is a nonterminal and λ is any (possibly 
empty) string of terminals and/or nonterminals.  Thus,  a  CFG cannot 
specify context-sensitive rules such as:	


wXz → wλz	


which states that  nonterminal  X  can be rewritten by λ  only when X 
occurs in the local context wXz in a sentential form. Such productions 
are possible in context-sensitive grammars (CSG’s).	




The advantage of CFG’s over HMM’s lies in their ability to model arbitrary runs of 
matching pairs of “palindromic” elements, such as nested pairs of parentheses:	


(((((((())))))))	


where each opening parenthesis must have exactly one matching closing parenthesis on 
the  right.  When  the  number  of  nested  pairs  is  unbounded  (i.e.,  a  matching  close 
parenthesis can be arbitrarily far away from its open parenthesis), a finite-state model 
such as a DFA or an HMM is inadequate to enforce the constraint that all left elements 
must have a matching right element. 	


In contrast, the modeling of nested pairs of elements can be readily achieved in a CFG 
using rules such as X→(X). A sample derivation using such a rule is:	


X ⇒ (X) ⇒ ((X)) ⇒ (((X))) ⇒ ((((X)))) ⇒ (((((X)))))	


An additional rule such as X→ε is necessary to terminate the recursion.	


Context-free Versus Regular 



Limitations of CFG’s 
One thing that  CFG’s can’t  model is  the matching of arbitrary runs of matching 
elements in the same direction (i.e., not palindromic):	


......abcdefg.......abcdefg..... 

In other words, languages of the form:	


wxw	


for strings w and x of arbitrary length, cannot be modeled using a CFG.  	


More relevant to ncRNA prediction is the case of pseudoknots, which also cannot be 
recognized using standard CFG’s:	


....abcde....rstuv.....edcba.....vutsr.... 

The problem is that the matching palindromes (and the regions separating them) are 
of arbitrary length.	


Q: why isn’t this very 
relevant to RNA 
structure prediction?  

Hint: think of the 
directionality of paired 
strands. 



Stochastic CFG’s (SCFG’s) 
A stochastic context-free grammar (SCFG) is a CFG plus a probability 
distribution on productions:	


G = (V, α, S, R, Pp) 	

where Pp : R  , and probabilities are normalized at the level of each 
l.h.s. symbol X: 

∀[ ∑ Pp(X→λ)=1 ] 
                                                              X∈V   X→λ 

Thus, we can compute the probability of a single derivation S⇒*x by 
multiplying the probabilities for all productions used in the derivation: 

∏ i P(Xi→λi)	


We can sum over all possible (leftmost) derivations of a given string x 
to get the probability that G will generate x at random: 

P(x | G) = ∑ P(S⇒j
*x | G). 

                                                       j 



A Simple Example 
As an example, consider G=(VG, α, S, RG, PG), for VG={S, L, N}, α={a,c,g,t}, and RG 
the set consisting of:	


S → a S t | t S a | c S g | g S c | L	


L → N N N N 

N → a | c | g | t 

where  ∀λPG(S→λ)=0.2,  PG(L→NNNN)=1,  and  ∀λPG(N→λ)=0.25.  Then  the 
probability of the sequence acgtacgtacgt is given by:	


P(acgtacgtacgt) =	


P( S ⇒ aSt ⇒ acSgt ⇒ acgScgt ⇒ acgtSacgt ⇒	

acgtLacgt ⇒ acgtNNNNacgt ⇒ acgtaNNNacgt ⇒	


acgtacNNacgt ⇒ acgtacgNacgt ⇒ acgtacgtacgt) =	


0.2 × 0.2 × 0.2 × 0.2 × 0.2 × 1 × 0.25 × 0.25 × 0.25 × 0.25 =  1.25×10-6	


because this sequence has only one possible leftmost derivation under grammar G.	

If multiple derivations were possible, we would use the Inside Algorithm.	


(P=0.2) 

(P=1.0) 

(P=0.25) 



Implementing Zuker in an SCFG 

i is unpaired j is unpaired 
i pairs with j 

. . . 

loops 
stems, bulges, 
internal loops multiloops 

Rivas & Eddy 2000 
(Bioinformatics 16:583-605) 

i+1 pairs with j-1 



Implementing Zuker in an SCFG 

Rivas & Eddy 2000 
(Bioinformatics 16:583-605) 



The Parsing Problem 

Two questions for a CFG: 

1)  Can a grammar G derive string x? 

2)  If so, what series of productions would be used during 
the derivation? (there may be multiple answers!) 

Additional questions for an SCFG: 

1)  What is the probability that G derives string x? 

2)  What is the most probable derivation of x via G? 

(likelihood) 



Chomsky Normal Form (CNF) 
Any CFG which does not derive the empty string (i.e., ε ∉ L(G)) can be converted into 
an equivalent grammar in Chomsky Normal Form (CNF). A CNF grammar is one in 
which all productions are of the form:	


X → Y Z	

or:	


X → a 

for nonterminals X, Y, Z, and terminal a.	


Transforming  a  CFG  into  CNF  can  be  accomplished  by  appropriately-ordered 
application of the following operations:	


• eliminating useless symbols (nonterminals that only derive ε)	

• eliminating null productions (X→ε)	

• eliminating unit productions (X→Y)	

• factoring long rhs expressions (A→abc factored into A→aB, B→bC, C→c)	

• factoring terminals (A→cB is factored into A→CB, C→c)	


(see, e.g., Hopcroft & Ullman, 1979).	




Non-CNF:	


S → a S t | t S a | c S g | g S c | L	

L → N N N N 
N → a | c | g | t 

CNF - Example 

CNF:	


S → A ST | T SA | C SG | G SC | N L1 	

SA → S A	

ST → S T	

SC → S C	

SG → S G	

L1 → N L2	

L2 → N N	

N → a | c | g | t 
A → a	

C → c	

G → g	

T → t	


Disadvantages of CNF: (1) more nonterminals & productions, (2) more convoluted relation to problem domain (can be 
important when implementing posterior decoding) 

Advantages: (1) easy implementation of inference algorithms 



The CYK Parsing Algorithm 

j 

k 

i 
( i, j ) 

i 

j 

(i, k) 

( k+1, j ) 

Cell (i, j) contains all the nonterminals X 
which can derive the entire subsequence: 
actagctatctagcttacggtaatcgcatcgcgc. 

(k+1, j) contains only those nonterminals 
which can derive the red substring. 

(i, k) contains only those nonterminals 
which can derive the green              
substring. 

(0, n-1 ) 

initialization: 

   X→x (diagonal) 

inductive: 

   A→BC (for all A, 
BC, and k) 

termination: 

  is S∈D0, n-1? 

A 

C 

B 

S? 



The CYK Parsing Algorithm (CFG’s) 
Given a grammar G = (V, α, S, R) in CNF, we initialize a DP matrix D such that: 	


∀ 0≤i<n Di,i ={A | A→xi ∈ R}	


for  the  input  sequence  I  = x0 x1...  xn-1.  The  remainder  of  the  DP matrix  is  then 
computed row-by-row (left-to-right, top-to-bottom) so that: 	


Di, j ={A | A→BC ∈ R, for some B∈Di,k and C∈Dk+1, j, i≤k<j}.	


for 0≤i<j<n. By induction, X∈Di, j iff X⇒*xi xi+1... xj. Thus, I∈L(G) iff S∈D0, n-1.	


We can  obtain  a  derivation  S⇒*I  from the  DP matrix  if  we  augment  the  above 
construction so as to include traceback pointers from each nonterminal A in a cell 
cellA  to the two cells  cellB  and cellC  corresponding to B  and C  in the production 
A→BC used in the above rule for computing Di, j. Starting with the symbol S in cell 
(0, n-1), we can recursively follow the traceback pointers to identify the series of 
productions for the reconstructed derivation.	


(Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965) 



Modified CYK for SCFG’s (“Inside Algorithm”) 
CYK can be easily modified to compute the probability of a string.  

We associate a probability with each nonterminal in Di, j , as follows: 

1)  For each nonterminal A we multiply the probabilities associated 
with B and C when applying the production A→BC (and also 
multiply by the probability attached to the production itself) 

2)  We sum the probabilities associated with different productions for A 
and different values of the “split point” k 

The probability of the input string is then given by the probability 
associated with the start symbol S in cell (0, n-1). 

If we instead want the single highest-scoring parse, we can simply 
perform an argmax operation rather than the sums in step #2. 



The Inside Algorithm 
Recall that for the forward algorithm we defined a forward variable f(i, j). Similarly, for 
the inside algorithm we define an inside variable α(i, j, X): 

α(i, j, X) = P( X⇒*xi ... xj | X) 

which denotes the probability that nonterminal X will derive subsequence xi... xj. 

Computing this variable for all integers i and j and all nonterminals X constitutes the 
inside algorithm: 
for i=0 up to L-1 do 
  foreach nonterminal X do 
    α(i,i,X)=P(X→xi); 
for i=L-2 down to 0 do 
  for j=i+1 up to L-1 do 
    foreach nonterminal X do 
      α(i,j,X)=∑Y∑Z∑k=i..j-1 P(X→YZ)α(i,k,Y)α(k+1,j,Z); 

Note that P(X→YZ)=0 if X→YZ is not a valid production in the grammar. 

The probability P(x|G) of the full input sequence x of length L can then be found in the 
final cell of the matrix: α(0, L-1, S) (the “corner cell”). Reconstructing the most 
probable derivation (“parse”) can be done by modifying this algorithm to (1) compute 
max’s instead of sums, and (2) to keep traceback pointers as in Viterbi. 

j 

k 

i ( i, j ) 
(i, k) 

( k+1, j ) 

(0, L-1 ) 

X 

Z 

Y 

€ 

time =O(L3N 3)
i 

j 



Training an SCFG 

Two common methods for training an SCFG: 

1)  If parses are known for the training sequences, we can simply count 
the number of times each production occurs in the training parses 
and normalize these counts into probabilities. This is analogous to 
“labeled sequence training” of an HMM (i.e., when each symbol in 
a training sequence is labeled with an HMM state). 

2)  If parses are NOT known for the training sequences, we can use an 
EM algorithm similar to the Baum-Welch algorithm for HMMs. The 
EM algorithm for SCFGs is called Inside-Outside. 



Y 

S 

Y 

Recall: Forward-Backward 
CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA 

Inside-Outside uses a similar trick to estimate the 
expected number of times each production is used: 

€ 

time =O(L3N 3)

€ 

time =O(L3N 3)

€ 

time =O(LN 2 )

€ 

time =O(LN 2 )L=length, N=#states 

L=length, N=#nonterminals 



Inside vs. Outside 

α(i, j,Y) = P( Y⇒*CGCTCGACTATTATATCAGTCT | Y ) 
β (i, j,Y ) = P( S ⇒* CATCGTATCGCGCGATATCTCGATCATYACTTCAGATCTAT ) 
α(i, j, Y) β (i, j,Y ) =  

 P( S⇒* CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCAGTCTACTTCAGATCTAT , 
with the red subsequence being generated by Y ) 

α(i, j, Y) β (i, j,Y ) 
α(0, L-1, S) = posterior probability P(Y,i,j|full sequence)  

(def. of CFG: inside seq. is cond. indep. outside seq., given Y) 

Y 

S 

Y 



The Outside Algorithm 

For the outside algorithm we define an outside variable β(i, j, Y): 

β (i, k,Y ) = P( S ⇒* x0..xi-1 Y xk+1..xL-1 ) 

which denotes the probability that the start symbol S will derive the sentential form 
x0..xi-1 Y xk+1..xL-1 (i.e., that S will derive some string having prefix x0... xi-1 and suffix 
xk+1... xL-1 and that the region between will be derived through nonterminal Y). 

β(0,L-1,S)=1; 
foreach X≠S do β(0,L-1,X)=0; 
for i=0 up to L-1 do 
  for j=L-1 down to i do 
    foreach nonterminal X do 
      if β(i,j,X) undefined then 
        β(i,j,X)=∑Y∑Z∑k=j+1..L-1 P(Y→XZ)α(j+1,k,Z)β(i,k,Y)+ 
                 ∑Y∑Z∑k=0..i-1 P(Y→ZX)α(k,i-1,Z)β(k,j,Y); 

S 

Y X 

Z 

€ 

time =O(L3N 3)

i 

j 

k 

i 

j 



S 

Y X 

Z 

i 

j 

k 

S 
Y 
X 

Z 
i 

j 

k 

The Two Cases in the Outside Recursion 

Y→XZ Y→ZX 
In both cases we compute β(X) in terms of β(Y) and α(Z), 

summing over all possible positions of Y and Z: 



Inside-Outside Parameter Estimation 

€ 

Pnew (X→YZ ) =
E(X→YZ x)

E(X x)

                       =

β(i, j,X)P(X→YZ)α(i,k,Y )α(k +1, j,Z )
k=i

j−1

∑
j=i+1

L−1

∑
i=0

L−2

∑

β(i, j,X)α(i, j,X)
j=i

L−1

∑
i=0

L−1

∑

€ 

Pnew (X→ a) =
E(X→ a x)
E(X x)

                    =

δkron(xi ,a)β(i, i,X)P(X→ a)
i=0

L−1

∑

β(i, j,X)α(i, j,X)
j=i

L−1

∑
i=0

L−1

∑

EM-update equations: 

(see Durbin et al., 1998, section 9.6) 



Posterior Decoding for SCFG’s 

€ 

P(Xi , j ⇒Yi ,kZk+1, j x) =
β(i, j,X )P(X→YZ)α(i,k,Y )α(k +1, j,Z )

α(0,L −1,S)

€ 

P(X ⇒ xi x) =
β(i,i,X )P(X→ xi )

α(0,L −1,S)

“What is the probability that nonterminal X generates the subsequence xi ... xj via 
production X→YZ, with Y generating xi ... xk and Z generating xk+1 ... xj?” 

“What is the probability that nonterminal X generates xi (in some particular 
sequence)?” 

  

€ 

P(Fi , j x) =
some product of α’s and β’s (and other things)

α(0,L −1,S)

“What is the probability that a structural feature of type F will occupy sequence 
positions i through j?” 



What about Pseudoknots? 

“Among the most prevalent RNA structures is a motif known as the pseudoknot.” (Staple & Butcher, 2005)  



Context-Sensitive Grammar for Pseudoknots 
L(G) = { x y xr yr | x ∈α*, y ∈α* } 

S → L X R 

X → a X t | t X a | c X g | g X c | Y	


Y → a A Y | c C Y | g G Y | t T Y | ε	


A a → a A ,   A c → c A ,   A g → g A ,  A t → t A   
C a → a C ,  C c → c C ,   C g → g C ,  C t → t C   
G a → a G ,  G c → c G ,  G g → g G ,  G t → t G   
T a → a T ,   T c → c T ,   T g → g T ,    T t → t T   

A R → t R ,   C R → g R ,  G R → c R ,  T R → a R  

L a → a L , L c → c L , L g → g L , L t → t L , L R → ε   

generate x and xr	


erase extra “markers”  

reverse-complement second y at 
end of sequence	


propagate encoded copy of y 
to end of sequence	


generate y and encoded 2nd copy	


place markers at left/right ends	




Sliding Windows to Find ncRNA Genes 
Given a grammar G describing ncRNA structures and an input sequence Z, we can 
slide a window of length L across the sequence, computing the probability P(Zi,i+L-1| 
G) that the subsequence Zi,i+L-1 falling within the current window could have been 
generated by grammar G.  

Using a likelihood ratio:  

R = P(Zi,i+L-1|G) / P(Zi,i+L-1|background),  

we can impose the rule that any subsequence having a score R>>1 is likely to contain 
a ncRNA gene (where the background model is typically a Markov chain). 

atcgatcgtatcgtacgatcttctctatcgcgcgattcatctgctatcattatatctattatttcaaggcattcag 
sliding window 

R = 0.99537 (summing over 
all possible 
secondary 
structures under 
the grammar) 



•  An SCFG is a generative model utilizing production rules to 
generate strings 

• SCFG’s are more powerful than HMM’s because they can 
model arbitrary runs of paired nested elements, such as base-
pairings in a stem-loop structure.  They can’t model 
pseudoknots (though context-sensitive grammars can) 

•  Thermodynamic folding algorithms can be simulated in an 
SCFG 

• The probability of a string S being generated by an SCFG G 
can be computed using the Inside Algorithm 

•  Given a set of productions for a SCFG, the parameters can 
be estimated using the Inside-Outside (EM) algorithm 

Summary 


