Hidden Markov Models

part 1

CBB 261 / CPS 261

B. Majoros

What is an HMM?

The short answer: it's an <u>opaque</u>, <u>nondeterministic</u> machine that <u>emits variable-length</u> sequences of <u>discrete¹</u> <u>symbols</u>.

What we mean by "Hidden" in "Hidden Markov Model": We can take the machine apart and look inside to see how many states there are and how they are connected, but we can't look inside the machine while it's running. (However, we can make inferences about what probably happened inside the machine, based on its output.)

¹...usually, though not always...

What is an HMM?

An HMM is a *stochastic machine* $M = (Q, \alpha, P_t, P_e)$ consisting of the following:

- a finite set of states, $Q = \{q_0, q_1, \dots, q_m\}$
- a finite <u>alphabet</u> $\alpha = \{s_0, s_1, \dots, s_n\}$
- a <u>transition</u> distribution $P_t: Q \times Q \mapsto \mathbb{R}$
- an <u>emission</u> distribution $P_e: Q \times \alpha \mapsto \mathbb{R}$

Probability of a Sequence

S=YRYRY $\phi = (q0, q1, q2, q1, q2, q1, q0)$

$P(\text{YRYRY}|M_1) =$

 $a_{0 \rightarrow 1} \times b_{1,Y} \times a_{1 \rightarrow 2} \times b_{2,R} \times a_{2 \rightarrow 1} \times b_{1,Y} \times a_{1 \rightarrow 2} \times b_{2,R} \times a_{2 \rightarrow 1} \times b_{1,Y} \times a_{1 \rightarrow 0}$ =1 × 1 × 0.15 × 1 × 0.3 × 1 × 0.15 × 1 × 0.3 × 1 × 0.05 =0.00010125 Duke

Another Example

 $M_{2} = (Q, \alpha, P_{t}, P_{e})$ $Q = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\}$ $\alpha = \{A, C, G, T\}$

Finding the Most Probable Path

Decoding with an HMM

$$\phi_{\max} = \operatorname{argmax}_{\phi} P(\phi|S) = \operatorname{argmax}_{\phi} \frac{P(\phi,S)}{P(S)}$$

$$= \operatorname{argmax}_{\phi} P(\phi,S)$$

$$= \operatorname{argmax}_{\phi} P(S|\phi) P(\phi)$$

$$F(S|\phi) = \prod_{i=0}^{L-1} P_e(x_i | y_{i+1})$$

$$F(\phi) = \prod_{i=0}^{L} P_i(y_{i+1} | y_i)$$

$$F(\phi) = \prod_{i=0}^{L} P_i(y_{i+1} | y_i)$$

$$F(\phi) = \operatorname{argmax}_{\phi} P(\phi) P(\phi)$$

$$F(y_{i+1} | y_i)$$

$$F(\phi) = \operatorname{argmax}_{\phi} P(\phi) P(\phi)$$

$$F(y_{i+1} | y_i)$$

$$F(\phi) = \operatorname{argmax}_{\phi} P(\phi) P(\phi)$$

The Viterbi Algorithm

$$V(i,k) = \begin{cases} \max_{j} V(j,k-1)P_t(q_i | q_j)P_e(x_k | q_i) & \text{if } k > 0, \\ P_t(q_i | q_0)P_e(x_0 | q_i) & \text{if } k = 0. \end{cases}$$

In the final column:

$$P(\phi_{\max}) = \max_{i} V(i, L-1) P_t(q_0 | q_i)$$

Viterbi: Traceback

$$V(i,k) = \begin{cases} \max_{j} V(j,k-1)P_{t}(q_{i}|q_{j})P_{e}(x_{k}|q_{i}) & \text{if } k > 0, \\ P_{t}(q_{i}|q_{0})P_{e}(x_{0}|q_{i}) & \text{if } k = 0. \end{cases}$$
$$T(i,k) = \begin{cases} \arg_{j} XV(j,k-1)P_{t}(q_{i}|q_{j})P_{e}(x_{k}|q_{i}) & \text{if } k > 0, \\ 0 & \text{if } k = 0. \end{cases}$$

T(T(T(...,T(T(i,L-1),L-2)...,2),1),0) = 0

(Log) Viterbi Algorithm in Pseudocode

The Forward Algorithm : Probability of a Sequence

$$F(i,k) = \begin{cases} 1 & \text{for } k = 0, i = 0 \\ 0 & \text{for } k > 0, i = 0 \\ 0 & \text{for } k = 0, i > 0 \end{cases}$$

$$F(i,k) = \begin{cases} 1 & \text{for } k = 0, i = 0 \\ 0 & \text{for } k = 0, i > 0 \\ 0 & \text{for } k = 0, i > 0 \end{cases}$$

$$F(i,k) = \begin{cases} 2^{|-1|} \sum_{j=0}^{|-1|} F(j,k-1)P_t(q_i \mid q_j)P_e(x_{k-1} \mid q_i) & \text{for } 1 \le k \le |S|, \\ 1 \le i < |Q| \end{cases}$$

F(i,k) represents the probability $P(S_{0..k-1}|q_i)$ that the machine emits the subsequence $x_0...x_{k-1}$ by any path ending in state q_i —i.e., so that symbol x_{k-1} is emitted by state q_i .

$$P(S \mid M) = \sum_{i=0}^{|Q|-1} F(i, |S|) P_t(q_0 \mid q_i)$$

The Forward Algorithm in Pseudocode

```
procedure unscaledForwardAlg(Q, P<sub>t</sub>, P<sub>e</sub>, S, \lambda_{trans}, \lambda_{emit})
          \forall_{i \in [0, |Q|-1]} \forall_{k \in [0, |S|]} F[i][k] \leftarrow 0;
1.
    F[0][0]←1;
2.
3.
    for k \leftarrow 1 up to |S| do
4.
    s←S[k-1];
              foreach q_i \in \lambda_{\text{emit}}[s] do
                                                                                               fill out the
5.
                                                                                               DP matrix
6.
                  sum \leftarrow 0;
7.
                  foreach q_i \in \lambda_{trans}[i] do
                     sum \leftarrow sum + P_t (q_i | q_j) * F[j][k-1];
8.
9.
                 F[i][k] \leftarrow sum^* P_e(s|q_i);
10.
          return F;
procedure unscaledForwardProb (Q, P<sub>t</sub>, P<sub>e</sub>, S, \lambda_{trans}, \lambda_{emit})
          F \leftarrow unscaled Forward Alg (Q, P<sub>t</sub>, P<sub>e</sub>, S, \lambda_{trans}, \lambda_{emit});
1.
2. sum←0;
                                                                                               sum over
3.
    len←|S|;
                                                                                               the final
    s←S[len-1]
4.
                                                                                               column to
5.
          foreach q_i \in \lambda_{emit}[s] do
                                                                                               get P(S)
6.
              sum \leftarrow sum + F[i][len] * P_t(q_0|q_i);
7.
           return sum;
                                                                                                        Duke
```

Training an HMM from Labeled Sequences

CGATATTCGATTCTACGCGCGTATACTAGCTTATCTGATC 01111112222222111112222111111222211110

S				to state									
sition			0	1	2								
rar	from	0	0 (0%)	1 (100%)	0 (0%)								
1	state	1	1 (4%)	21 (84%)	3 (12%)								
		2	0 (0%)	3 (20%)	12 (80%)								

			symbol									
SUC		Α	С	G	Т							
in state	1	6 (24%)	7 (28%)	5 (20%)	7 (28%)							
0	2	3 (20%)	3 (20%)	2 (13%)	7 (47%)							

 $a_{i,j} = \frac{A_{i,j}}{\sum_{h=0}^{|Q|-1} A_{i,h}}$

 $e_{i,k} = \frac{E_{i,k}}{\sum_{h=0}^{|\Sigma|-1} E_{i,k}}$

Recall: Eukaryotic Gene Structure

Using an HMM for Gene Prediction

the input sequence: AGCTAGCAGTATGT the most probable path: ______ the gene prediction: _____

Recall: Sensitivity and Specificity

$$Sn = \frac{TP}{TP + FN}$$

$$Sp = \frac{TP}{TP + FP}$$

$$F = \frac{2 \times Sn \times Sp}{Sn + Sp}$$

HOMER, version H_3

	nuc	cleoti	des	splice sites		start cod	/stop lons	е	genes			
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#
baseline	100	28	44	0	0	0	0	0	0	0	0	0
H ₃	53	88	66	0	0	0	0	0	0	0	0	0

HOMER, version H_5

	nuc	cleoti	des	splice sites		start/stop codons		exons			genes		
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#	
H ₃	53	88	66	0	0	0	0	0	0	0	0	0	
H ₅	65	91	76	1	3	3	3	0	0	0	0	0	Juke

	nucleotides			SITES		coaons		exons			genes		
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#	
H ₅	65	91	76	1	3	3	3	0	0	0	0	0	
H ₁₇	81	93	87	34	48	43	37	19	24	21	7	35	ke
					ALC: NOT THE OWNER							UNIVI	ERSITY

Maintaining Phase Across an Intron

Recall: Weight Matrices

Summary of HOMER Results

Figure 6.10: Nucleotide F-score (y-axis) on a test set of 500 A. thaliana genes, as a function of number of states (x-axis) in an HMM for a simple gene finder.

	nue	cleoti	des	splice sites		start coa	t/stop lons	e	exons	genes		
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#
baseline	100	28	44	0	0	0	0	0	0	0	0	0
H ₃	53	88	66	0	0	0	0	0	0	0	0	0
H ₅	65	91	76	1	3	3	3	0	0	0	0	0
H ₁₇	81	93	87	34	48	43	37	19	24	21	7	35
H ₂₇	83	93	88	40	49	41	36	23	27	25	8	38
H ₇₇	88	96	92	66	67	51	46	47	46	46	13	65
H ₉₅	92	97	94	79	76	57	53	62	59	60	19	93

Higher-order Markov Models

	P(G)
0 th order:	ACGCTA

 $1^{st} \text{ order:} \qquad ACGCTA$

2nd order:

P(G|AC) ACGCTA

$$P_{e}(g_{n} | g_{0}...g_{n-1},q_{j}) \approx \frac{C(g_{0}...g_{n},q_{j})}{\sum_{s \in \alpha} C(g_{0}...g_{n-1}s,q_{j})}$$

Higher-order Markov Models

	order	order nucleotides		splice sites		starts/ stops		exons			genes		
		Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#
H_{95}^0	0	92	97	94	79	76	57	53	62	59	60	19	93
H_{95}^{l}	1	95	98	97	87	81	64	61	72	68	70	25	127
H_{95}^2	2	98	98	98	91	82	65	62	76	69	72	27	136
H_{95}^3	3	98	98	98	91	82	67	63	76	69	72	28	140
H_{95}^{4}	4	98	97	98	90	81	69	64	76	68	72	29	143
H_{95}^{5}	5	98	97	98	90	81	66	62	74	67	70	27	137

Variable-Order Markov Models

$$P_e^{IMM} (g_n | g_0 \dots g_{n-1}) = \begin{cases} \lambda_n^G P_e(g_n | g_0 \dots g_{n-1}) + (1 - \lambda_n^G) P_e^{IMM}(g_n | g_1 \dots g_{n-1}) & \text{if } n > 0 \\ P_e(g_n) & \text{if } n = 0 \end{cases}$$

$$\lambda_n^G = \begin{cases} 1 & \text{if } m \ge 400 \\ 0 & \text{if } m < 400 \text{ and } c < 0.5 \\ \frac{c}{400} \sum_{x \in \alpha} C(g_0 \dots g_{n-1}x) & \text{otherwise} \end{cases}$$

Interpolation Results

Figure 7.4: Relative accuracy of Markov chains (MC), IMC's, three-periodic MC's (3PMC), and three-periodic IMC's (3PIMC) on a particular task involving classification of human DNA sequences as coding versus noncoding.

• An HMM is a *stochastic generative model* which emits sequences

 Parsing with an HMM can be accomplished using a *decoding* algorithm (such as *Viterbi*) to find the most probable state-path generating the input sequence

 When state-labeled sequences are available, training of HMMs can be accomplished using *labeled sequence training*

• Otherwise, training of HMMs can be accomplished using *Expectation-Maximization (EM) (next lesson...)*

•*Posterior decoding* can be used to estimate the probability that a given symbol or substring was generate by a particular state (*next lesson...*)

