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to state 
0 1 2 

from 
state 0 0 (0%) 1  (100%) 0   (0%) 

1 1 (4%) 21 (84%) 3   (12%) 
2 0 (0%) 3   (20%) 12 (80%) 

symbol 
A C G T 

  in 
state 1 6 

(24%) 7 
(28%) 5 

(20%) 7 
(28%) 

2 3 
(20%) 3 

(20%) 2 
(13%) 7 

(47%) 
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The Problem: 

We have training sequences, but not the associated paths (state 
labels).  Therefore, we have to do unsupervised training. 

The Solution: 

EM Training: sum over all possible paths to estimate expected 
counts Ai, j and Ei,k ; then use the same formulas as for labeled 
sequence training on these expected counts: 

Doing this iteratively is guaranteed to maximize the likelihood... 
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training  
features 

Forward- 
Backward 

expected 
counts 

initial 
submodel 

M 

new 
submodel 

M ʹ′ 

final 
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repeat n times 
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 S = x0 .......... xk-1 xk .......... xL-1 



(i,k-1) 



€ 

F(i,k) =

1 for k = 0,i = 0
0 for k = 0,i > 0
0 for k > 0,i = 0

F( j,k −1)Pt (qi q j )Pe(xk−1 qi )
j=0

|Q|−1

∑ for 1≤ k ≤ S ,
     1≤ i < Q

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

€ 

P(S M ) = F(i, S )Pt (q0 qi )
i=0

|Q|−1

∑

start in state q0 

q0 is silent 

recurrence 



€ 

B(i,k) =
Pt (q j qi )Pe(xk q j )B( j,k +1)

j=1

|Q|−1

∑   if k < L,

Pt(q0 qi )   if k = L.

⎧ 

⎨ 
⎪ 

⎩ 
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€ 

P(S M ) = B(0,0)
THEREFORE: 

end in state q0 

recurrence 



*because xk...xL-1 is conditionally independent of x0...xk-1, given qi@k-1  

€ 

expectation(Eqi ,s
) = Pcount(c S)c

c=0

1
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k∍xk=s
∑ = P(qi@k S)

k∍xk=s
∑ =

F(i,k +1)B(i,k +1)
P(S)k∍xk=s

∑

€ 

expectation(Ai, j ) =
F(i,k)Pt (qj qi )Pe(xk qj )B( j,k +1)

P(S)k
∑

€ 

expectation[ f (x)]= P(x) f (x)
x
∑

recall: 

this is the “Forward-Backward Algorithm” 



compute Fwd & Bkwd DP matrices 
accumulate expected counts for E & A 

    

€ 

F (i,k +1)B(i,k +1)
P(S)
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F (m,k)Pt (qn | qm )Pe(xk | qn )B(n,k +1)
P(S)
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updateModel(M,A,E) 



    

€ 

log pi
i=0

n−1
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⎠ 
⎟ = log p0 + log 1+ elog pi −log p0

i=1

n−1
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In the log-space version of these algorithms, we can replace 
the raw probabilities pi with their logarithmic counterparts, 
log pi, and apply the above equation whenever the 
probabilities are to be summed. Evaluation of the elog pi-log p0 
term should generally not result in numerical underflow in 
practice, since this term evaluates to pi/p0, which for 
probabilities of similar events should not deviate too far from 
unity. 
(due to Kingsbury & Rayner, 1971) 

Tip: watch out for zero probabilities! 
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€ 

P(E is an exon | S) = P(φ | S)
all φ 

containing E

∑

€ 

P(E = [i, j] is an exonS) = F(y,i)Pt (qexon qy )
y≠qexon ,
z≠qexon

∑ Pe(xk qexon )
k=i

j

∏
⎛ 
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                   ×Pt (qexon qexon ) j−i Pt(z qexon )Pe(x j+1 z)B(z, j + 2) /P(S)

Forward algorithm Backward algorithm fixed path 



€ 

L(θ) = log P(X,Yθ )
Y
∑

€ 

Q(θk+1θk ) = P(YX,θk )
Y
∑ logP(X,Yθk+1)

Define  

Dempster et al. (1977) introduced the Q function:  

 for observables X, unobservables Y, and model θ. 

from which we can derive another function, V, having several useful properties: 

€ 

V (θk+1θk ) = L(θk )+Q(θk+1θk )−Q(θk θk )

(Borman, 2006). The two useful properties of V are: 

€ 

L(θk+1) ≥V (θk+1θk )

€ 

L(θk ) =V (θk θk )and  

The first property follows from Jensen’s inequality and the concavity of the log 
function; the second follows directly from the definition of V. 

“expected value 
of the complete-

data log 
likelihood” 



L(θ ) V(θ |θk ) 

θ*
    θk+1      θk 

€ 

L(θk+1) ≥V (θk+1θk )

€ 

L(θk ) =V (θk θk )

a 
b 

c 

d 

Observe that c≥b≥a. Thus, by stepping from θk to θk+1 we will increase L: 

(c≥b) (a=a) 

€ 

L(θk+1) ≥V (θk+1θk ) ≥V (θk θk ) = L(θk )

€ 

∴L(θk+1) ≥ L(θk )



€ 

θk+1 = argmax
θ

V (θθk )

Thus, by increasing V we are guaranteed to increase L. By iteratively increasing V 
(for successive values of k) we will be effectively hill-climbing on L. Furthermore, 
if we iteratively maximize V rather than just increasing it, we will be hill-climbing 
with the largest possible step size at each iteration: 

we arrive at the EM update equation: 

€ 

θk+1 = argmax
θ

Q(θθk )€ 

argmax
θ

V (θθk ) = argmax
θ

L(θk )+Q(θθk )−Q(θk θk )( )
Since any term not dependent on θ drops out of the optimization: 

, 



€ 

Q(θk+1θk ) = P(φ S,θk )
φ

∑ logP(S,φθk+1)

= Ei,x logek ,x
x∈α
∑

i=1

N−1

∑ + Ai, j logai, j
j=0

N−1

∑
i=0

N−1

∑

In the case of HMMs, we have: 

(Durbin et al., 1998). It can be shown (see next slide) that Q is 
maximized by simply choosing: 

€ 

ai, j
k+1 =

Ai, j
Ai,hh=0

|Q|−1
∑

€ 

ei, j
k+1 =

Ei, j

Ei,hh=0

|α|−1
∑

where Ai,j and Ei,j are the expected emission and transition counts 
computed via Forward-Backward.  € 

θk+1 = e•,•
k+1,a•,•

k+1{ } “EM update 
equations” 



€ 

Q(θk+1θk )−Q(θθk ) =

        Ei,y
y∈α
∑
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⎟ ⎟ ei,x

k+1 log
ei,x
k+1

ei,xx∈α
∑

i=1

N−1

∑ + Ai, j
j=0

N−1

∑
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⎟ ⎟ ai,h

k+1 log
ai,h
k+1

ai,hh=0

N−1

∑
i=0

N−1

∑

To see that this choice of parameters will indeed maximize Q, 
consider the difference between the chosen θk+1 and an alternative θ: 

(Durbin et al., 1998). The log-sum terms are relative entropies, which 
are always non-negative; the Ei,y and Ai,j terms are also non-negative, 
and are constant for any fixed θk.  Thus, Q(θk+1|θk)≥Q(θ|θk) for any θ 
other than θk+1, so Q(θk+1|θk) is maximal. 

relative entropy relative entropy 
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push 

... 
(continuous values, discrete time) 



discrete: 

continuous: 

DNA/RNA – e.g., ATTCGATCGCGATA 

read counts – e.g., 1,2,3,4,5,6,7,.... 

anything – e.g., 1.372, -11234.8876, 7.42e-10 
numeric: 

alphabetical: 

Examples of numeric sequential data: 

Read counts from deep sequencing 
DNAse I hypersensitivity 
Chromatin marks 
DNA methylation assays 
Raw sequencer output 



Gaussian mixture model: 

D variates (“signals”, “dimensions”) 
m mixture components 

  

€ 

eq(s ) = λqjN (s;µj ,Cj )
j=0

m−1

∑
  

€ 

N (s;µ ,C) =
1

det(2πC)
e
−
1
2
(s−µ )T C −1 (s−µ )

D=1, m=5 D=2, m=2 

 λi = a single mixture weight 
 µi = vector of D means (one mean per variate) 
 Ci = D×D covariance matrix (one) 

“Gaussian density” “mixture of Gaussians” 

For each component i we have: 



  

€ 

ρij =
λ jN (Si;µ j ,C j )

λ jN (Si;µ j ,C j )
j=0

m−1

∑

€ 

µ j ←

Siρij
i=0

L−1

∑

ρij
i=0

L−1

∑

€ 

C j ←

(Si −µ j )(Si −µ j )
T ρij

i=0

L−1

∑

ρij
i=0

L−1

∑

€ 

λ j ←

ρij
i=0

L−1

∑

ρij
i=0

L−1

∑
j=0

m−1

∑

Posterior probability of mixture component j for observation i: 

EM update formulas: 



  

€ 

eq(s ) = λqjN (s;µj ,Cj )
j=0

m−1

∑
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ρqij =
FqiBqi
FqiBqi

q∈Q
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λqjN (Si ;µj ,Cj )

λqjN (Si ;µj ,Cj )
j=0

m−1
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€ 

µj ←
Siρqij

i=0

L−1

∑
q∈Q
∑

ρqij
i=0

L−1

∑
q∈Q
∑

€ 

C j ←

(Si −µ j )(Si −µ j )
T ρqij

i=0

L−1

∑
q∈Q
∑

ρqij
i=0

L−1

∑
q∈Q
∑

€ 

λqj ←
ρqij

i=0

L−1

∑

ρqij
i=0

L−1

∑
j=0

m−1

∑

Posterior probability of state q & component j for observation i: 

EM update formulas: 

State emission probability: 



A tends to emit high values for marks v1-v3,  
B tends to emit high values for marks v4-v6,  
C tends to emit high values for marks v7-v9 

bg (background) is unbiased 

9-dimensional continuous outputs: 

q0 

A 

B 

C 

bg 



CORRECT PARSE: 

v1 

v2 

v3 

v4 

v5 

v6 

v7 

v8 

v9 



training 
sequences 

test 
sequences 

Generator Model 

emit EM 

Trained Model 



CORRECT PARSE: 

PREDICTED PARSE: 

v1 

v2 

v3 

v4 

v5 

v6 

v7 

v8 

v9 



• Training an HMM with unlabeled sequences can be 
accomplished using the Baum-Welch algorithm. 

• Baum-Welch estimates transition & emission events by 
computing expectations via Forward-Backward, by summing 
over all paths containing a given event. It works because it is 
an instance of the EM algorithm.  

• EM finds a local maximum of the likelihood function.  

• Posterior decoding can be used to estimate the probability 
that a given symbol or substring was generated by a 
particular state. 

• Continuous-emission HMMs can be used to model various 
eipigentic sequence data, and they can be trained using EM 
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