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Recall: Training with Labeled Sequences
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Training with Unlabeled Sequences

The Prbblem:

We have training sequences, but not the associated paths (state
labels). Therefore, we have to do unsupervised training.

The Solution:

EM Training: sum over all possible paths to estimate expected
counts 4, ; and E;, ; then use the same formulas as for labeled

2

sequence training on these expected counts:

A E,

— L,J —
4 = Qo

e, =
4 i,k |a|—1E
h=0 “ih E heo Bk

Doing this iteratively 1s guaranteed to maximize the likelihood...
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The Baum-Welch Algorithm(“EM™)
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features 7
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repeat n times
R T 2 conmonsons X1

.xk_l,qi) = P(M emits x,...x,_, by any path ending in
state ¢, with x,_, emitted by ¢,).

R(x,..

Lo X; 1]g) = P(M emits x,...x; , and then terminates,
given that M 1s 1n state ¢,, which has
emitted x, ;). Duke
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Forward-Backward: Summing over All Paths

all IEft paths

\/“’“) all right paths

B\ _/
" 'zl

F B

5,k)B(i,k)
P(M emits x,..x, ,..x, ,, with x,_, being emitted by state ¢,)

> anchoring the path at a particular emission.

t(q,l g)P (%) q) B( j.k+1)

M emits x,..x, x,..x; | and uses transition g,—¢; at time k- 1)

ichoring the path at a particular transition.
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Recall: The Forward Algorithm

il fork=0,0=0
0 fork=0j>0 | start in state g,
0 fork>0,i=0 } g, is silent

'(i,k) @

I0I-1
EF(]ak L 1)P; (ql qj )Pe (xk—l Qz) forl=k= 2 recurrence
j=0 -

1=i<|Q

(% /) represents the probability P(x,...x,_, g;) that the machine
s the subsequence x,,...x,_, by any path ending in state g—
0 that symbol x, , 1s emitted by state ¢ ..
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The Backward Algorithm

(1011

P(q.lq.)P )B(j,k+1 if k<L,  recurrence
B(i’k)=<; (q;9;) e(xk\q,) (J.k+1l) itk< }
| \Pz‘(QO ql) itk=L. } end 1n state g,

B(i,k) = probability that the machine M will emit the
subsequence x,...x; , and then terminate, given that M 1s
currently in state g, (which has already emitted x,_,).

EREFORE:
P(S|M) = B(0,0)



The Forward-Backward Algorithm

F(i,k) = P(x,...x,_{,9,) = P(M emits x,...x, , by any path ending in
state ¢,, with x, , emitted by ¢,).

B(i,k) = P(x,...x; _,|g.) = P(M emits x,...x, , and then terminates,
given that M 1s 1n state ¢,, which has
emitted x,_,).

BERB(I.K) = P(x)...x,_1,q )P x,_lg =P (... x;_1,q@k=1)"
" ; k) B(i,k)/ P(S) =P (q i@k—l | S)}this is the “Forward-Backward Algorithm”

expectation(E . )= E

kaxk =S

F(i,k)P.(q,\a,)P.(x,|g,)B(j.k +1)

P(S) recall:
expectation| f(x)] = E P(x)f(x)

Elioum<c|5>c)= Y P(g, @Kls)= Y 3 <i,k+;£)<i,k+1>

k3x,=s kax,=s

expectation(4, ;) = E

k

‘because x,...x; _, is conditionally independent of x,...x,_,, given q,@k-1 Duke
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The Baum-Welch Algorithm (EM)

procedure baumWelch (ref M, T,n)

(QraIPtIPe)(_M;
for h«1 up to

Vicio,0-11Y5¢0, 0-27 A[L][J]<0;
Ve, 0-11V%er0, 1@-17 E[1]1[k]«<0;
foreach SET do
Fe—forwardAlgorithm (M, S) ;
B«—backwardAlgorithm (M, S) ;
updateCounts (A,E,F,B,Q,S);
updateModel (M,A,E) ;

n do

updateModel (M, A, EX

P«—B[0][0];
for i1 up to

procedure updateCounts (ref A,ref E,F,B,Q,S)

I0]-1 do

for k<0 up to |S|-1 do
E[1][S[k-1]]<E[1][S[k-1]]+F[1][k]*B[1i][k]/P;
for j«0 up to [Q|-1 do

Alj]li]eA

SJIEHFG IR Pe (qa fas) ™
P, (S[k]|q:)*B[i][k+1]/P;

A[1][0]F[i][S

]*Pt(qO _)/Pr

} compute Fwd & Bkwd DP matrices

} accumulate expected counts for E & A

F(i,k+1)B(,k+1)
P(S)

F(m,k)F(q,4,)L(x|q,)B(n,k+1)

P(S)
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Using Logarithms in Forward & Backward

n-l1

log Epl. = log p, + log 1+Eelogp"'logp°

\ =0 i=1

In the /og-space version of these algorithms, we can replace
the raw probabilities p, with their logarithmic counterparts,
log p, and apply the above equation whenever the
- probabilities are to be summed. Evaluation of the e/08 ».~/0g P
term should generally not result in numerical underflow in
ractice, since this term evaluates to p/p,, which for
obabilities of similar events should not deviate too far from

Ravner. 1971)
Tip: watch out for zero probabilities!
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Monotonic Convergence - To a Maximum

iteration
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Another use of Forward-Backward: Posterior Decoding

\--—

<

-------------------

__________
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s
fixed path

Backward algorithm

HP (% |Guron >)

qexon )})e(xj+1‘Z)B(Z9j i 2)/P(S)

Forward algorithm

P(E is a exon|S)= Y P(¢|5)

all ¢
containing £

P(E [l,]] 1S an CXOH|S) = EF(y Z)P (qexon

y;éqexon
= qexon

qexon )]_l Pt (Z

q,)

x I)t (qexon
Duke



Why Baum-Welch Works: EM

Define L(0)=log E P (X,Y‘H ) for observables X, unobservables Y, and model 6.
Y

Dempster ef al. (1977) introduced the Q function: ~

Q(Hk+1

“expected value
of the complete-

ek)=EP(Y\X,@k)logP(X,Y\9k+1) ~ s
Y /

likelihood”

which we can derive another function, 7, having several useful properties:

V(6,.116,) = L(6,)+Q(6,,,0,) - 0(6,]6,)

, 2006). The two useful properties of J are:

L(B,.,)=V(0,,]6,) ad L(O,)=V(,]6,)

yerty follows from Jensen s inequality and the concavity of the log
econd follows directly from the definition of V.
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Visualizing EM

LO,.)=V®, |0) L©B,)=V(8,/6,)

(c=b) (a=a)

816, L(9)

6* Hkﬂ Hk

1at czb=a. Thus, by stepping from 0 to 0., we will increase L:

L©B,.)=V(@,,6,)=V®,,) =L@,
“ L(B,.,)= L(6))

UNINERSITY



Thus, by increasing /' we are guaranteed to increase L. By iteratively increasing V
(for successive values of k) we will be effectively hill-climbing on L. Furthermore,
if we iteratively maximize V rather than just increasing it, we will be hill-climbing
with the largest possible step size at each iteration:

0,., =argmaxV(6)0,)
0

any term not dependent on 6 drops out of the optimization:

arg max V(G‘Gk) = arg max(;@k’f + Q(G‘Hk) - /QCQ;TH,C/)) :

at the EM update equation:
0,., =argmaxQ(0l6,)
0
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The O Function for HMMs

In the case of HMMs, we have:

Q(6k+1

N-1N-1

EEE loge, . +EEA loga, .

i=1 xEa i=0 j=0

bin ef al., 1998). It can be shown (see next slide) that QO 1s
mized by simply choosing:

i k+l i,j — ) okl K+l “EM update
e 0. {e ,a } p

|Q|—1 A la.] Elal—l E *° e equations”
iy i h=0 N

1a Forward Backward.
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The O Function for HMMs

To see that this choice of parameters will indeed maximize O,
consider the difference between the chosen 6, , and an alternative 6

Q(9k+19 )-0(6)6,) =

k+1 N-1{N-1 - k+1
Cl
AN 24, E
D -1 \ yEa xEa i,x i=0 \ j=0 h=0 al,h
b v e Y ~
relative entropy relative entropy

et al., 1998). The log-sum terms are relative entropies, which
ays non-negative; the £, , and 4, ; terms are also non-negative,

onstant for any fixed 6,. Thus, O(6,,,/0,)=0(6|6,) for any 6
1 0,1, 50 O(0,_,]0,) 1s maximal.
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Summary for Baum-Welch

We want to maximize the likelihood, L.

Ve can do this by iteratively maximizing V

SI06,)

Imizing V 1s equivalent to maximizing Q:

arg max V(6l6,) = arg znax(gwk’ﬂ Q0,)- 9(9;@/))
!

\";

1 normalized, expected counts maximizes Q:

K. G, 000,..6,)-0,)-
2 ek+1 = 2 et Nafna
l,] lal-1 E[Eb‘ ]Eek llog +2[2A )Eak llog_
! Ei,h 0\ j=0 h=0 |
ih h=0 — =

\ o e e L
ore, these formulas maximize the likelihood. -
BT UN IEIE i’SLl:Y ¥



Continuous, Multivariate HMMs

(continuous values, discrete time)
O 5
. Mo

9

i, 6
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numeric: <

Types of Emissions

ohabetical: { DNA/RNA — e.g., ATTCGATCGCGATA

discrete: read counts —e.g., 1,2,3,4,5,6,7,....

"mples of numeric sequential data: T

_continuous: anything —e.g., 1.372, -11234.8876, 7.42e-10

Ase |
omati
\ met

ead counts from deep sequencing . . |

hypersensitivity 0o
n marks = =
hylation assays v

sequencer output =
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Modeling Continuous Emissions

Gaussian mixture model:

L L 11

D variates (“signals”, “dimensions”)
m mixture components

)r each component i we have:
A; = a single mixture weight

1. = vector of D means (one mean per variate) /k
C. = DxD covariance matrix (one) )

m—l‘l‘ /
e,(s) = Z?LQJW(S;MJ-,CJ-) N(s;u.,C) =
J=

1
1 —5<s—u>TC'1 (s—tt)

Jdet(2nC)

“mixture of Gaussians” “Gaussian density”

To0UONT
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Tramning a Gaussian Mixture with EM

Posterior probability of mixture component j for observation i:

AN Squ,.C))
pij = m-1
DN Su,.C))
j=0
pdate formulas:
L-1
L-1
(8= u)S; - 1) p, “ Pi
= = A= o
i=0 j=0 i=0
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Training a Gaussian HMM with EM

State emission probability: 8

e (s) = 2 N (s;u.C))

Posterior probability of state ¢ QR oiient/ for observaion ;:
} \

F.B . AyN(S5u.C))
8 N R
\ZQ qi qt/ 2)\, N(SZ,MJ,C)

ndate formulas:

L-1
L-1 L-1
Sipqij EE(SZ_M])(SI_M])TPQU “ pqij
=_1 8 = i )qu R
\ pqij Ezpqu JZZ= pqij
U g€0 i=0
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Simulation: Chromatin Marks

9-dimensional continuous outputs:

A tends to emit high values for marks v,-v;,
B tends to emit high values for marks v,-vy,
C tends to emit high values for marks v,-vq
bg (background) is unbiased




CORRECT PARSE

i = A




Training a Model from the Simulated Data

| erator Model Trained Model

A A

- > o
. training
B emlt> EM > @)

B
RN
:




\ o MW
'CORRECT PARSE:

S
N
A
B

PREDICTED PARSE:




*Training an HMM with unlabeled sequences can be
accomplished using the Baum-Welch algorithm.

‘Baum-Welch estimates transition & emission events by
computing expectations via Forward-Backward, by summing
over all paths containing a given event. It works because it is
an instance of the EM algorithm.

EM finds a local maximum of the likelihood function.

*Posterior decoding can be used to estimate the probabillity
that a given symbol or substring was generated by a
particular state.

*Continuous-emission HMMs can be used to model various
eipigentic sequence data, and they can be trained using EM

Duke
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