
Hidden Markov Models

CBB 261
part 2

B. Majoros

to state
0 1 2

from
state 0 0 (0%) 1 (100%) 0 (0%)

1 1 (4%) 21 (84%) 3 (12%)
2 0 (0%) 3 (20%) 12 (80%)

symbol
A C G T

 in
state 1 6

(24%) 7
(28%) 5

(20%) 7
(28%)

2 3
(20%) 3

(20%) 2
(13%) 7

(47%)

∑
−

=

= 1||

0 ,

,
, Q

h hi

ji
ji

A

A
a

€

ei,k =
Ei,k

Ei,hh=0

|α |−1
∑

The Problem:

We have training sequences, but not the associated paths (state
labels). Therefore, we have to do unsupervised training.

The Solution:

EM Training: sum over all possible paths to estimate expected
counts Ai, j and Ei,k ; then use the same formulas as for labeled
sequence training on these expected counts:

Doing this iteratively is guaranteed to maximize the likelihood...

∑
−

=

= 1||

0 ,

,
, Q

h hi

ji
ji

A

A
a

€

ei,k =
Ei,k

Ei,hh=0

|α |−1
∑

training
features

Forward-
Backward

expected
counts

initial
submodel

M

new
submodel

M ʹ′

final
submodel

M
*

repeat n times

∑
−

=

= 1||

0 ,

,
, Q

h hi

ji
ji

A

A
a

€

ei,k =
Ei,k

Ei,hh=0

|α |−1
∑

 S = x0 xk-1 xk xL-1

(i,k-1)

€

F(i,k) =

1 for k = 0,i = 0
0 for k = 0,i > 0
0 for k > 0,i = 0

F(j,k −1)Pt (qi q j)Pe(xk−1 qi)
j=0

|Q|−1

∑ for 1≤ k ≤ S ,
 1≤ i < Q

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

€

P(S M) = F(i, S)Pt (q0 qi)
i=0

|Q|−1

∑

start in state q0

q0 is silent

recurrence

€

B(i,k) =
Pt (q j qi)Pe(xk q j)B(j,k +1)

j=1

|Q|−1

∑ if k < L,

Pt(q0 qi) if k = L.

⎧

⎨
⎪

⎩
⎪

€

P(S M) = B(0,0)
THEREFORE:

end in state q0

recurrence

*because xk...xL-1 is conditionally independent of x0...xk-1, given qi@k-1

€

expectation(Eqi ,s
) = Pcount(c S)c

c=0

1

∑
⎛

⎝
⎜

⎞

⎠
⎟

k∍xk=s
∑ = P(qi@k S)

k∍xk=s
∑ =

F(i,k +1)B(i,k +1)
P(S)k∍xk=s

∑

€

expectation(Ai, j) =
F(i,k)Pt (qj qi)Pe(xk qj)B(j,k +1)

P(S)k
∑

€

expectation[f (x)]= P(x) f (x)
x
∑

recall:

this is the “Forward-Backward Algorithm”

compute Fwd & Bkwd DP matrices
accumulate expected counts for E & A

€

F (i,k +1)B(i,k +1)
P(S)

€

F (m,k)Pt (qn | qm)Pe(xk | qn)B(n,k +1)
P(S)

∑
−

=

= 1||

0 ,

,
, Q

h hi

ji
ji

A

A
a

€

ei,k =
Ei,k

Ei,hh=0

|α |−1
∑

updateModel(M,A,E)

€

log pi
i=0

n−1

∑
⎛

⎝
⎜

⎞

⎠
⎟ = log p0 + log 1+ elog pi −log p0

i=1

n−1

∑
⎛

⎝
⎜

⎞

⎠
⎟

In the log-space version of these algorithms, we can replace
the raw probabilities pi with their logarithmic counterparts,
log pi, and apply the above equation whenever the
probabilities are to be summed. Evaluation of the elog pi-log p0
term should generally not result in numerical underflow in
practice, since this term evaluates to pi/p0, which for
probabilities of similar events should not deviate too far from
unity.
(due to Kingsbury & Rayner, 1971)

Tip: watch out for zero probabilities!

iteration
1 10 20 30 40 50

lo
g

lik
el

ih
oo

d

€

P(E is an exon | S) = P(φ | S)
all φ

containing E

∑

€

P(E = [i, j] is an exonS) = F(y,i)Pt (qexon qy)
y≠qexon ,
z≠qexon

∑ Pe(xk qexon)
k=i

j

∏
⎛

⎝
⎜

⎞

⎠
⎟

 ×Pt (qexon qexon) j−i Pt(z qexon)Pe(x j+1 z)B(z, j + 2) /P(S)

Forward algorithm Backward algorithm fixed path

€

L(θ) = log P(X,Yθ)
Y
∑

€

Q(θk+1θk) = P(YX,θk)
Y
∑ logP(X,Yθk+1)

Define

Dempster et al. (1977) introduced the Q function:

 for observables X, unobservables Y, and model θ.

from which we can derive another function, V, having several useful properties:

€

V (θk+1θk) = L(θk)+Q(θk+1θk)−Q(θk θk)

(Borman, 2006). The two useful properties of V are:

€

L(θk+1) ≥V (θk+1θk)

€

L(θk) =V (θk θk)and

The first property follows from Jensen’s inequality and the concavity of the log
function; the second follows directly from the definition of V.

“expected value
of the complete-

data log
likelihood”

L(θ) V(θ |θk)

θ*
 θk+1 θk

€

L(θk+1) ≥V (θk+1θk)

€

L(θk) =V (θk θk)

a
b

c

d

Observe that c≥b≥a. Thus, by stepping from θk to θk+1 we will increase L:

(c≥b) (a=a)

€

L(θk+1) ≥V (θk+1θk) ≥V (θk θk) = L(θk)

€

∴L(θk+1) ≥ L(θk)

€

θk+1 = argmax
θ

V (θθk)

Thus, by increasing V we are guaranteed to increase L. By iteratively increasing V
(for successive values of k) we will be effectively hill-climbing on L. Furthermore,
if we iteratively maximize V rather than just increasing it, we will be hill-climbing
with the largest possible step size at each iteration:

we arrive at the EM update equation:

€

θk+1 = argmax
θ

Q(θθk)€

argmax
θ

V (θθk) = argmax
θ

L(θk)+Q(θθk)−Q(θk θk)()
Since any term not dependent on θ drops out of the optimization:

,

€

Q(θk+1θk) = P(φ S,θk)
φ

∑ logP(S,φθk+1)

= Ei,x logek ,x
x∈α
∑

i=1

N−1

∑ + Ai, j logai, j
j=0

N−1

∑
i=0

N−1

∑

In the case of HMMs, we have:

(Durbin et al., 1998). It can be shown (see next slide) that Q is
maximized by simply choosing:

€

ai, j
k+1 =

Ai, j
Ai,hh=0

|Q|−1
∑

€

ei, j
k+1 =

Ei, j

Ei,hh=0

|α|−1
∑

where Ai,j and Ei,j are the expected emission and transition counts
computed via Forward-Backward. €

θk+1 = e•,•
k+1,a•,•

k+1{ } “EM update
equations”

€

Q(θk+1θk)−Q(θθk) =

 Ei,y
y∈α
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ ei,x

k+1 log
ei,x
k+1

ei,xx∈α
∑

i=1

N−1

∑ + Ai, j
j=0

N−1

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ ai,h

k+1 log
ai,h
k+1

ai,hh=0

N−1

∑
i=0

N−1

∑

To see that this choice of parameters will indeed maximize Q,
consider the difference between the chosen θk+1 and an alternative θ:

(Durbin et al., 1998). The log-sum terms are relative entropies, which
are always non-negative; the Ei,y and Ai,j terms are also non-negative,
and are constant for any fixed θk. Thus, Q(θk+1|θk)≥Q(θ|θk) for any θ
other than θk+1, so Q(θk+1|θk) is maximal.

relative entropy relative entropy

€

ai, j
k+1 =

Ai, j
Ai,hh=0

|Q|−1
∑

€

ei, j
k+1 =

Ei, j

Ei,hh=0

|α|−1
∑

push

...
(continuous values, discrete time)

discrete:

continuous:

DNA/RNA – e.g., ATTCGATCGCGATA

read counts – e.g., 1,2,3,4,5,6,7,....

anything – e.g., 1.372, -11234.8876, 7.42e-10
numeric:

alphabetical:

Examples of numeric sequential data:

Read counts from deep sequencing
DNAse I hypersensitivity
Chromatin marks
DNA methylation assays
Raw sequencer output

Gaussian mixture model:

D variates (“signals”, “dimensions”)
m mixture components

€

eq(s) = λqjN (s;µj ,Cj)
j=0

m−1

∑

€

N (s;µ ,C) =
1

det(2πC)
e
−
1
2
(s−µ)T C −1 (s−µ)

D=1, m=5 D=2, m=2

 λi = a single mixture weight
 µi = vector of D means (one mean per variate)
 Ci = D×D covariance matrix (one)

“Gaussian density” “mixture of Gaussians”

For each component i we have:

€

ρij =
λ jN (Si;µ j ,C j)

λ jN (Si;µ j ,C j)
j=0

m−1

∑

€

µ j ←

Siρij
i=0

L−1

∑

ρij
i=0

L−1

∑

€

C j ←

(Si −µ j)(Si −µ j)
T ρij

i=0

L−1

∑

ρij
i=0

L−1

∑

€

λ j ←

ρij
i=0

L−1

∑

ρij
i=0

L−1

∑
j=0

m−1

∑

Posterior probability of mixture component j for observation i:

EM update formulas:

€

eq(s) = λqjN (s;µj ,Cj)
j=0

m−1

∑

€

ρqij =
FqiBqi
FqiBqi

q∈Q
∑

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

λqjN (Si ;µj ,Cj)

λqjN (Si ;µj ,Cj)
j=0

m−1

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

€

µj ←
Siρqij

i=0

L−1

∑
q∈Q
∑

ρqij
i=0

L−1

∑
q∈Q
∑

€

C j ←

(Si −µ j)(Si −µ j)
T ρqij

i=0

L−1

∑
q∈Q
∑

ρqij
i=0

L−1

∑
q∈Q
∑

€

λqj ←
ρqij

i=0

L−1

∑

ρqij
i=0

L−1

∑
j=0

m−1

∑

Posterior probability of state q & component j for observation i:

EM update formulas:

State emission probability:

A tends to emit high values for marks v1-v3,
B tends to emit high values for marks v4-v6,
C tends to emit high values for marks v7-v9

bg (background) is unbiased

9-dimensional continuous outputs:

q0

A

B

C

bg

CORRECT PARSE:

v1

v2

v3

v4

v5

v6

v7

v8

v9

training
sequences

test
sequences

Generator Model

emit EM

Trained Model

CORRECT PARSE:

PREDICTED PARSE:

v1

v2

v3

v4

v5

v6

v7

v8

v9

• Training an HMM with unlabeled sequences can be
accomplished using the Baum-Welch algorithm.

• Baum-Welch estimates transition & emission events by
computing expectations via Forward-Backward, by summing
over all paths containing a given event. It works because it is
an instance of the EM algorithm.

• EM finds a local maximum of the likelihood function.

• Posterior decoding can be used to estimate the probability
that a given symbol or substring was generated by a
particular state.

• Continuous-emission HMMs can be used to model various
eipigentic sequence data, and they can be trained using EM

Expectation–maximization algorithm. (2011). In Wikipedia, The Free
Encyclopedia.
http://en.wikipedia.org/wiki/Expectation–maximization_algorithm

Bilmes JA (1998) A Gentle Tutorial of the EM Algorithm and its Application
to Parameter Estimation for Gaussian Mixture and Hidden Markov
Models.
http://crow.ee.washington.edu/people/bulyko/papers/em.pdf

Borman S. (2009) The Expectation Maximization Algorithm : A short
tutorial.
 http://www.seanborman.com/publications/EM_algorithm.pdf

Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society B 39(1):1–38.
http://www.jstor.org/stable/2984875

