Advancing the State-of-the-art in. Computational Gene Prediction

Bill Majoros (bmajoros@duke.edu)

Overview

Part I: Background and Current Methods

- Definition of the Problem
- HMM's, GHMM's, PairHMM's, PhyloHMM's
- Combiners & Expression-based Methods

Part II : Limitations of Current Methods NA

- Alternative Splicing
- Suboptimality of Pure HMM's
- Lack of Practical Discriminative Training Methods
- Reliance on Pre-computed Alignments

• Part III : Future Directions

- Redefining the Problem
- Greater Reliance on Machine-learning Methods
- Focus on Integrative Approaches
- Importance of Interoperability

maximum likelihood estimation

I. Background and Current Methods

learning

no

homoir

eudogenes

overtraining

maximum likelihood estimation

Cells, Chromosomes, and DNA

Nucleotide Composition of DNA

Exons, Introns, and Genes

The human genome:

23 pairs of chromosomes

2.9 billion A's, T's, C's, G's

~25,000 genes (?)

~1.4% of genome is coding

The Central Dogma of Molecular Biology

cellular structure / function

The mod-3 Nature of the Genetic Code

Splicing of Eukaryotic Messenger RNAs

The Eukaryotic Gene Finding Problem

>4271863

GAATTCTCCAACCCCAGGTGAGGATCTGACTACCTGGAACAGAACCCCGCTCTTCCAGGTGAGAATATGACAGAATAAAGCAG CACCCTGCACCCCCAGTTGAGCATCTGACAGCCTGGGGGCAGCACCCCACACTCCCAGGTGAGCATCTGACAGCCTGGAGCAGCA CCCACACCCCCAGGTGTGCATCTGACAGCCTGAAACAGCACCCTCCACCACCAGATGAGCATCTGACAACCAGAACCTGCACC ACACACCCCCAAGGTGGGCATCCGATGGCATGGAACAGCACCCCCACTCACAGGTGATGTGACTGCGTGGAACAGCACATCCCC CAGGTAAGTGTCTGACAGCCTAGAGCGGCACCTGCACACTTAGGTAAGAATCTGAAAGCCTGGATCAACACTCGAACCCCCAG GTGAGCATCTGACAGCCTGGAGCAGCACCCCCACACCTCCAGGGGAGCATCTGACATCCTGGAACAGCACCCCCACACCCCCAGT GAGCATCTGACAACCTGGAGCAGCACCCCACACCTCCAGGGGAGCATCTGACATCCTGGAACAGCACCCCCACACCTCCAGGGG GAGCATCTGACAGCCTGGAGCAACACCCCCACACCTCCAGGGGAGCATCTGACAGCCTGGAACAGCACCCCCACACCTCCAGGGG AGCATCTGACAGCATGGACAAGTCCTGCCCCCCCGGTTAGTGTCTGAATTCCTGGAATATGTGCTGTCCTTTTCCACCAGGTGA GCATATGACCGCCTGGAAGAAGCACCCCTGCATGTTACCTGTGGTGAAACCAAGGCTGAGAGACAGGACAGGGTTGTTGGCCA GGAGGAGGGGCCTGCTGCTGAGCCCCAGCGCTGAGTCAGAGCTCACAGCCTTGAGCCTGTGCCATGCCTCCTCCAGGGTGAA CTGCTGCTCCTACCGTCACTCCCACATGCTAGCCCTCCAACGTCCTGGCTGACTTTCCCTGCCTCTGGTCCTGCGGCCCTGGACTCTGTGCTGTGCTTTTACCCAGCGAAGCATCAGGGCAGACAGCCAATTTCAACACTGCTCTTGGCTGGGAAGTGCCCTCATC TCTGGCAGCCCCCACAGAGAAAGTGCAGGGCCCCGGGGGCTGTGGCTGCCTCAGGGCAGGTCTCCCCTTGTGACAGCCTCTTGTC ATGGGCCTGGGAGTGGACCCCTCCCATCCCTGCCGTGCATCCTGTTGAGTAGACAGCTCAGGCTAGTACCCAAGAGGGTGGCC AGCAGATCACAGGGGGATGTCCCTTTTGTCTTAGCTGTTTATGGGCTGGAGGAACCACTGTTCAGCCACATCTCCTCCTCCCGCC ACCACCATCCCTTTCCAGAACTAGCTCATCTTCCCAAACTGAAACTCTGTCCCCGTTAAATACTAACTCTCCGTTCCCCAGGC AATCACACAGTGTTTGTCCTTTTGTGGTGGCTGCTTATTTTGCTGAGCACAATGTCCTTGAGGTTCATCCATGTTGTAGTGTG

The Stochastic Nature of Signal Sensing

Common Assumptions in Gene Finding

- •No overlapping genes
- •No nested genes
- •No frame shifts or sequencing errors
- •Optimal parse only
- •No split start codons (ATGT...AGG)
- •No split stop codons (TGT...AGAG)
- •No alternative splicing
- •No selenocysteine codons (TGA)
- •No ambiguity codes (Y,R,N, etc.)

Definition of a Hidden Markov Model

$$M = (Q, \alpha, P_t, q_0, P_e)$$
$$Q = (q_0, q_1, q_2, q_3, q_4)$$
$$\alpha = \{A, T, C, G\}$$

Finding the Most Probable Path

Decoding with an HMM

$$\phi_{\max} = \frac{\operatorname{argmax}}{\phi} P(\phi | S) = \frac{\operatorname{argmax}}{\phi} \frac{P(\phi \wedge S)}{P(S)}$$

$$= \frac{\operatorname{argmax}}{\phi} P(\phi \wedge S)$$

$$= \frac{\operatorname{argmax}}{\phi} P(S | \phi) P(\phi)$$

$$P(S | \phi) = \prod_{i=0}^{L-1} \frac{P_e(x_i | q_{(i+1)})}{e^{\operatorname{mission prob.}}} P(\phi) = \prod_{i=0}^{L} \frac{P_i(q_{(i+1)} | q_{(i)})}{transition prob.}$$

$$\phi_{\max} = \frac{\operatorname{argmax}}{\phi} P_i(q_0 | q_{(L)}) \prod_{i=0}^{L-1} P_e(x_i | q_{(i+1)}) P_i(q_{(i+1)} | q_{(i)})$$

Decoding with the Viterbi Algorithm

$$V(i,k) = \begin{cases} \max_{j} V(j,k-1) P_t(q_i \mid q_j) P_e(x_k,q_i) & \text{if } k > 0, \\ P_t(q_i \mid q_0) P_e(x_0 \mid q_i) & \text{if } k = 0. \end{cases}$$

$$\phi^* = \frac{\arg \max}{\phi_{i,L-1}} V(i,L-1) P_t(q_0 \mid q_i)$$

Training an HMM from Labeled Sequence

CGATATTCGATTCTACGCGCGCGTATACTAGCTTATCTGATC 0111111222222211111222211111222211110

				to state									
sitions			0	1	2								
ran	from state	0	0 (0%)	1 (100%)	0 (0%)								
t_1		1	1 (4%)	21 (84%)	3 (12%)								
		2	0 (0%)	3 (20%)	12 (80%)								

 $a_{i,j} = \frac{A_{i,j}}{\sum_{h=0}^{|Q|-1} A_{i,h}}$

				syn	nbol	
SU			Α	С	G	Т
nissio	in state	1	6 (24%)	7 (28%)	5 (20%)	7 (28%)
θY		2	3 (20%)	3 (20%)	2 (13%)	7 (47%)

 $e_{i,k} = \frac{\mathcal{E}_{i,k}}{\sum_{h=0}^{|\Sigma|-1} E_{i,h}}$

Using an HMM for Gene Prediction

HOMER, version H_3 Intron (I)I=intron state Donor E=exon state (E) Exon N=intergenic state (N) codon Intergenic tested on 500

Arabidopsis genes:

	nuc	cleoti	des	spl sit	ice es	start coc	art/stop codons exons				genes		
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#	
baseline	50	28	44	0	0	0	0	0	0	0	0	0	
H ₃	53	88	66	0	0	0	0	0	0	0	0	0	

HOMER, version H_5

	nuc	cleoti	des	spl sit	ice es	start cod	start/stop codons exons			genes		
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sn Sp F			#
H ₃	53	88	66	0	0	0	0	0	0	0	0	0
H ₅	65 91 76		1	3	3	3	0	0	0	0	0	

	nuc	cleoti	des	spl sit	ice es	start/stop codons		e	xons	genes		
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#
H_5	65	91	76	1	3	3	3	0	0	0	0	0
H ₁₇	81	93	87	34	48	43	37	19	24	21	7	35

	nuc	leoti	des	spl	lice	start	/stop	е	xons	5	ger	nes
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#
H ₁₇	81	93	87	34	48	43	37	19	24	21	7	35
H ₂₇	83	93	88	40	49	41	36	23	27	25	8	38

	nuc	leoti	des	spl	lice	start	/stop	е	xons	5	ger	nes
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#
H ₂₇	83	93	88	40	49	41	36	23	27	25	8	38
H ₇₇	88	96	92	66	67	51	46	47	46	46	13	65

	nuc	cleoti	des	sp	splice		start/stop		exons			genes	
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#	
H ₇₇	88	96	92	66	67	51	46	47	46	46	13	65	
H ₉₅	92	97	94	79	76	57	53	62	59	60	19	93	

Higher-order Markov Models

$$0^{th} \text{ order:} \qquad A C G C T A$$

1st order:

P(G|C) A C G C T A

2nd order:

P(G|AC) ACGCTA

Higher-order Markov Models

	order	nucleotides			splice sites		starts/ stops		exons			genes		
		Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#	
H_{95}^0	0	92	97	94	79	76	57	53	62	59	60	19	93	
H_{95}^{l}	1	95	98	97	87	81	64	61	72	68	70	25	127	
H_{95}^2	2	98	98	98	91	82	65	62	76	69	72	27	136	
H_{95}^{3}	3	98	98	98	91	82	67	63	76	69	72	28	140	
H_{95}^4	4	98	97	98	90	81	69	64	76	68	72	29	143	
H ⁵ ₉₅	5	98	97	98	90	81	66	62	74	67	70	27	137	

Generalized Hidden Markov Models

Advantages:

- * Submodel abstraction
- * Architectural simplicity
- * State duration modeling

Disadvantages: * Decoding complexity

HMMs & Geometric Feature Lengths

Fixed-length states are called signal states (red).

Each state has a separate submodel or "sensor"

Some GHMM Submodel Types

1. WMM (Weight Matrix) $\int_{i=0}^{\infty}$

$$\prod_{i=0}^{L-1} P_i(x_i)$$

2. Nth-order Markov Chain (MC)

$$\prod_{i=0}^{n-1} P(x_i \mid x_0 \dots x_{i-1}) \prod_{i=n}^{L-1} P(x_i \mid x_{i-n} \dots x_{i-1})$$

3. Three-Periodic Markov Chain (3PMC)

$$\prod_{i=0}^{L-1} P_{(f+i)(\text{mod}3)}(x_i)$$

4. Nonstationary Markov Chain (NSMC)

$$max \prod_{i=1}^{n} P_{i}(x_{\sum_{j=1}^{i-1} d_{j}} \dots x_{(\sum_{j=1}^{i} d_{j})-1})$$

5. Codon Bias
$$\prod_{i=0}^{n-1} P(x_{\alpha+3i} x_{\alpha+3i+1} x_{\alpha+3i+2})$$

6. MDD7. Interpolated Markov Models

Recall: Decoding with an HMM

$$\phi_{\max} = \frac{\operatorname{argmax}}{\phi} P(\phi | S) = \frac{\operatorname{argmax}}{\phi} \frac{P(\phi \wedge S)}{P(S)}$$

$$= \frac{\operatorname{argmax}}{\phi} P(\phi \wedge S)$$

$$= \frac{\operatorname{argmax}}{\phi} P(S | \phi) P(\phi)$$

$$P(S | \phi) = \prod_{i=0}^{L-1} P_e(x_i | q_{(i+1)})$$

$$P(\phi) = \prod_{i=0}^{L} P_t(q_{(i+1)} | q_{(i)})$$

$$P(\phi) = \prod_{i=0}^{L} P_t(q_{(i+1)} | q_{(i)})$$

$$P(\phi) = \operatorname{argmax}_{i=0} P_e(x_i | q_{(i+1)}) P_i(q_{(i+1)} | q_{(i)})$$

Decoding with a GHMM

$$\phi_{\max} = \frac{\operatorname{argmax}}{\phi} P(\phi | S) = \frac{\operatorname{argmax}}{\phi} \frac{P(\phi \wedge S)}{P(S)}$$

$$= \frac{\operatorname{argmax}}{\phi} P(\phi \wedge S)$$

$$= \frac{\operatorname{argmax}}{\phi} P(S | \phi) P(\phi)$$

$$P(S | \phi) = \prod_{i=1}^{|\phi|-2} P_e(S_i | q_{(i)}, d_i) P(\phi) = \prod_{i=0}^{|\phi|-2} P_t(q_{(i+1)} | q_{(i)}) P_d(d_i | q_{(i)})$$

$$emission \ prob.$$

$$prob.$$

$$prob.$$

$$prob.$$

$$prob.$$

$$prob.$$

Efficient Decoding via Signal Sensors

Each signal state has a *signal sensor*:

GT

.0031

AG

.0021

TAG

.0032

ATG

.0045

GT

.002

TAG

.0072

ATG

.0023

AG

.0034

TAG

.0082
Accuracy

	nucleotides		splice		start/stop		exons		genes			
	Sn	Sp	F	Sn	Sp	Sn	Sp	Sn	Sp	F	Sn	#
HMM	98	97	98	90	81	66	62	74	67	70	27	
GHMM	94	96	95	87	89	77	74	79	80	80	45	

Comparative Methods

Problem: Predict genes in a <u>target genome</u> G based on the contents of G and also based on the contents of one or more <u>informant genomes</u> $I^{(1)}$... $I^{(n)}$:

informant genome:	ormant genome: GC-ATCGGTCTTA						A	
	• • •	:.	:	•	•	:	• • •	alignment
target genome:	ATCO	GGTZ	AA(C-G	TG	ΓA	ATGC -)

Rationale: Natural selection should operate more strongly on protein-coding DNA than on nonfunctional DNA such as introns.

Pair HMM's (PHMM's)

I_X: emit a symbol into output channel *X I_Y*: emit a symbol into output channel *Y M*: emit a symbol into both *X* and *Y*

 I_X can be called an *insertion state* I_Y can be called a *deletion state* M can be called a *match state*

Decoding for PHMM's

$$\phi^* = \underset{\phi = \{q^0 = q_0, \dots, q_{m-1} = q^0\}}{\operatorname{argmax}} P_t(q^0 \mid q_{m-2}) \prod_{i=1}^{m-2} P_e(a_{i,1}, a_{i,2} \mid q_i) P_t(q_i \mid q_{i-1})$$

$$V_{i,j,k} = \begin{cases} \max_{h} V_{i-1,j-1,h} P_{t}(q_{k} \mid q_{h}) P_{e}(s_{i-1,1}, s_{j-1,2} \mid q_{k}) & \text{for } q_{k} \in Q_{M} \\ \max_{h} V_{i-1,j,h} P_{t}(q_{k} \mid q_{h}) P_{e}(s_{i-1,1}, - \mid q_{k}) & \text{for } q_{k} \in Q_{I} \\ \max_{h} V_{i,j-1,h} P_{t}(q_{k} \mid q_{h}) P_{e}(-, s_{j-1,2} \mid q_{k}) & \text{for } q_{k} \in Q_{D} \end{cases}$$

$$T_{i,j,k} = \begin{cases} \arg_{i-1,j-1,h} V_{i-1,j-1,h} P_{t}(q_{k} \mid q_{h}) P_{e}(s_{i-1,1}, s_{j-1,2} \mid q_{k}) & \text{for } q_{k} \in Q_{M} \\ \arg_{i-1,j-1,h} V_{i-1,j,h} P_{t}(q_{k} \mid q_{h}) P_{e}(s_{i-1,1}, - \mid q_{k}) & \text{for } q_{k} \in Q_{I} \\ \arg_{i-1,j,h} V_{i,j-1,h} P_{t}(q_{k} \mid q_{h}) P_{e}(s_{i-1,1}, - \mid q_{k}) & \text{for } q_{k} \in Q_{I} \\ \arg_{i,j-1,h} V_{i,j-1,h} P_{t}(q_{k} \mid q_{h}) P_{e}(-, s_{j-1,2} \mid q_{k}) & \text{for } q_{k} \in Q_{D} \end{cases}$$

$$V_{0,0,k} = \begin{cases} 1 & \text{for } q_k = q^0 \\ 0 & \text{otherwise} \end{cases}$$
$$V_{i>0,0,k} = \begin{cases} \max_{h} V_{i-1,0,h} P_t(q_k | q_h) P_e(s_{i-1,1}, - | q_k) & \text{for } q_k \in Q_I \\ 0 & \text{otherwise} \end{cases}$$
$$V_{0,j>0,k} = \begin{cases} \max_{h} V_{0,j-1,h} P_t(q_k | q_h) P_e(-, s_{j-1,2} | q_k) & \text{for } q_k \in Q_D \\ 0 & \text{otherwise} \end{cases}$$

$$T_{i>0,0,k} = \begin{cases} \arg \max_{\substack{(i-1,0,h) \\ NIL}} V_{i-1,0,h} P_t(q_k | q_h) P_e(s_{i-1,1}, - | q_k) & \text{for } q_k \in Q_I \\ \text{otherwise} \end{cases}$$

$$T_{0,j>0,k} = \begin{cases} \arg \max_{\substack{(0,j-1,h) \\ NIL}} V_{0,j-1,h} P_t(q_k | q_h) P_e(-, s_{j-1,2} | q_k) & \text{for } q_k \in Q_D \\ \text{otherwise} \end{cases}$$

$$T_{0,0,k} = NIL$$

Pruning the Search Space for PHMM's

- •Find significantly conserved regions (thick bars) using BLAST
- •Force the DP algorithm to select a path which passes through these regions
- •Allow more flexibility in the regions not aligned
- •Do not evaluate regions of the matrix far from the conserved regions

Pair GHMM's (PGHMM's)

Each state in the GHMM now contains a PHMM, and emits a pair of sequence features rather than a single sequence feature.

Recall: GHMM Decoding

Finding the optimal parse, ϕ_{max} :

$$\phi_{\max} = \frac{\arg \max}{\phi} P(\phi \mid S) = \frac{\arg \max}{\phi} \frac{P(\phi, S)}{P(S)}$$

$$= \operatorname{arg\,max}_{\phi} P(\phi, S) = \operatorname{arg\,max}_{\phi} P(S \mid \phi) P(\phi)$$
$$= \operatorname{arg\,max}_{\phi} \prod_{i=1}^{n-1} P_e(S_i \mid q_i, d_i) P_t(q_i \mid q_{i-1}) P_d(d_i \mid q_i)$$
$$= \operatorname{emission}_{emission} = \operatorname{transition}_{emission} = \operatorname{duration}_{emission}$$

Decoding with a GPHMM

$$\phi^{*} = P_{t}(q^{0} \mid q_{n-2}) \frac{\arg \max}{\phi} \prod_{i=1}^{n-2} P_{e}(S_{i,1}, S_{i,2} \mid q_{i}, d_{i,1}, d_{i,2})$$

$$P_{t}(q_{i} \mid q_{i-1}) P_{d}(d_{i,1}, d_{i,2} \mid q_{i})$$

$$= \text{transition}$$

$$P_{e}(S_{i,1}, S_{i,2} | q_{i}, d_{i,1}, d_{i,2}) \approx P_{e}(S_{i,1} | q_{i}, d_{i,1}) P_{e}(S_{i,2} | S_{i,1}, q_{i}, d_{i,2})$$
=single-genome alignment score

emission score

 $P_d(d_{i,1}, d_{i,2} | q_i) = P(d_{i,1} | q_i) P(d_{i,2} | d_{i,1}, q_i)$ $\approx P(d_{i,1} | q_i) P(\Delta_d | q_i), \quad \Delta_d = d_{i,2} - d_{i,1}$ =single-genome ignore

duration score

(implicit in alignment score)

Practical GPHMM Decoding

Aligning Parse Graphs

The two parse graphs can be aligned using a global alignment algorithm. The optimal alignment corresponds to the chosen pair of orthologous gene predictions.

The alignment is constrained by the topologies of the two parse graphs:

1.Only like signals can align,

2.Two signals can align only if they have neighbors which also align,

3.Standard phase constraints apply.

Using a Sparse Alignment Matrix

Accuracy

Data set: 147 high-confidence *Aspergillus fumigatus* × *A. nidulans* orthologs (493 exons, 564kb).

	nucleotide accuracy	exon sensitivity	exon specificity	exact genes
GHMM	99%	78%	73%	54%
GPHMM	99%	89%	85%	74%

How Does Homology Help?

feature	amino acid alignment score	<,>	nucleotide alignment score
exon 1	100%	>	71%
intron 1	14%	<	51%
exon 2	98%	>	85%
intron 2	29%	<	49%
exon 3	97%	>	82%
intron 3	9%	<	49%
exon 4	96%	>	83%

Phylogenetic HMM's (PhyloHMM's)

model of gene structure

= a model of gene structure informed by observed evolutionary divergence

Evolutionary Sequence Conservation

- Using multiple genomes increases effective sample size
- However, we have to control for the nonindependence of informant genomes
- The "ideal evolutionary distance" for informant genomes usually is not known

human:	AAGGGAAGACAGGTGAGGGTCAAGCCCCAGCAAGTGCACCCAGACACC
chimp:	AAGGGAAGACAGGTGAGGGTCAAGCCCCAGCAAGTGCACCCAGACACC
COW:	AAGGGAAGACATTTACGAGTCAAGCCACAGAAAGAGCCCCTGAGGTGCC
dog:	AAAGGAGGACATGTGAGGGCCAAACTACTGAAGGTTCAACCAGGATGCT
galago:	AAGGGGAGACAGGGGGGGGGGGGCACACCATGGCAGAGGCCAAGACAGC
rat:	AAAGGAAACAATGGGAAGGTTA-TCAACTCCAAGTATGCCCAAGATCAAGGGAACCCCTT
mouse:	AAAGGAAACCACTGGGAGGTTA-GAAATCACAGGTGCACCCAAGATCAAGGAACCCCT

$$\phi^{*} = \frac{\arg \max}{\phi} P(\phi | S, I^{(1)}, ..., I^{(n)})$$

$$= \frac{\arg \max}{\phi} \frac{P(\phi, S, I^{(1)}, ..., I^{(n)})}{P(S, I^{(1)}, ..., I^{(n)})}$$

$$= \frac{\arg \max}{\phi} P(\phi, S, I^{(1)}, ..., I^{(n)})$$

$$= \frac{\arg \max}{\phi} P(\phi) P(S, I^{(1)}, ..., I^{(n)} | \phi)$$

$$= \frac{\arg \max}{\phi} \frac{P(\phi) P(S | \phi) P(I^{(1)}, ..., I^{(n)} | S, \phi)}{V(I^{(1)}, ..., I^{(n)} | S, \phi)}$$
standard GHMM computation tree likelihood (Felsenstein's algorithm)

Phylogenies as Bayes Networks

Likelihood rapidly decreases with larger numbers of mutations

(five species aligned over 5000 columns)

Modeling Evolutionary Change in both Nucleotides and Amino Acids

Recall from the earlier GHMM example:

feature	amino acid alignment score	<,>	nucleotide alignment score
exon 1	100%	>	71%
intron 1	14%	<	51%
exon 2	98%	>	85%
intron 2	29%	<	49%
exon 3	97%	>	82%
intron 3	9%	<	49%
exon 4	96%	>	83%

Thus, we model <u>separately</u> the rate of evolutionary change in coding regions (ideally at the amino acid level) and noncoding regions (at the nucleotide level).

Expression-based Methods

- Proteins and sequenced mRNA's can be aligned to the genome using dynamic programming algorithms.
- Various ad hoc methods have been explored for utilizing this information during gene prediction.
- Outputs from other gene finders can also be used as input to a "combiner" program.

Ad hoc "Combiner" Methods

boundaries of putative exons

II. Limitations of Current Methods

machine learning

NN

eudogenes

overtraining

maximum likelihood estimation

cDNA

1. MLE+Viterbi Is Not Optimal

Currently, most gene finders are trained via maximum likelihood estimation (MLE):

$$\theta^* = \frac{\arg \max}{\theta} \left(\prod_{(S,\phi)\in T} P(S,\phi \mid \theta) \right)$$
$$= \frac{\arg \max}{\theta} \left(\prod_{(S,\phi)\in T} \prod_{i=1}^{N-1} P_{\theta}(\pi_i \mid q_i, d_i) P_{\theta}(q_i \mid q_{i-1}) P_{\theta}(d_i \mid q_i) \right)$$

The advantage of MLE is that it is easy to perform, since the transition, emission, and duration parameters can be optimized separately:

$$\sum_{(S_i,\phi_i)\in T} \log \prod_{q_j\in\phi_i, j>0} P(q_j \mid q_{j-1}) \quad \text{(transitions)}$$

$$\sum_{\pi_j\in S_i\in T} \log P(\pi_j \mid q) \quad \text{(emissions)}$$

$$\sum_{(S_i,\phi_i)\in T} \log \prod_{(q_j,d_j)\in\phi_i} P(d_j \mid q_j) \quad \text{(durations)}$$

anecdotal evidence

Anecdotal evidence:

- folklore about $1/\sqrt{3}$ in the source code of a certain popular gene finder*
- fudge factor in: NSCAN ("conservation score coefficient"; Gross & Brent, 2005)
- fudge factor in: ExoniPhy ("tuning parameter"; Siepel & Haussler, 2004)
- fudge factor in TWAIN ("percent identity"; Majoros et al., 2005)
- fudge factor in GlimmerHMM ("optimism"; M. Pertea, pers. communication)
- fudge factor in TIGRscan ("optimism"; Majoros et al., 2004)
- *lack* of fudge factors in EvoGene (Pedersen & Hein, 2003)

If MLE+Viterbi produced optimal parsers, why would "tweaking" & the use of "fudge factors" be necessary? (...apart from sample size issues...)

^{*} folklore also states that this programs's author made pact with the devil in exchange for gene-finding accuracy, but I have encountered no independent verification of this.

a simple experiment

changes selected by the hill-climber

	symbol						
state		Α	С	G	Т		
	inter- genic	-12%	+5%	-3%	+10%		
	exon	+1%	+2%	+3%	-6%		
	intron	+3%	-1%	-6%	+4%		

changes to the emission parameters

	to state							
from state		0	1	2	3			
	0	•	•	•	•			
	1	•	-1.5%	+1.5%	•			
	2	•	+0.4%	-0.8%	+0.4%			
	3	•	•	+0.9%	-0.9%			

changes to the transition parameters

"These changes are consistent with the notion that superior discrimination requires exaggeration of (or emphasis on) those model parameters which most reliably separate the classes of interest. In this case, the *Arabidopsis* training genes showed both lower T content and higher C and G content in the exonic regions versus th e other two regions, and these biases, which were already present in the same proportions in the MLE model (data not shown) are obviously exaggerated in the discriminative model (Table 3). The most extreme exaggeration, the -12% for A in the intergenic state, is among the most subtle differences in the training data, in which the intergenic regions showed ~29% A versus ~27% in the exonic and intronic regions; in this way, the discriminative trainer has identified a subtle but consistent difference and boosted the "weight" of this feature in the model by exaggerating the corresponding emission probabilities."

another experiment: GHMM

what about conditional maximum likelihood?

Instead of:
$$\theta^* = \frac{\arg \max}{\theta} \left(\prod_{(S,\phi)\in T} P(S,\phi \mid \theta) \right)$$
 we might consider: $\theta^* = \frac{\arg \max}{\theta} \left(\prod_{(S,\phi)\in T} P(\phi \mid S,\theta) \right)$

This is called Conditional Maximum Likelihood. It expands into:

$$\theta^* = \frac{\arg \max}{\theta} \left(\prod_{(S,\phi)\in T} P(\phi \mid S,\theta) \right)$$
$$= \frac{\arg \max}{\theta} \left(\prod_{(S,\phi)\in T} \frac{P(S,\phi \mid \theta)}{P(S \mid \theta)} \right)$$
$$= \frac{\arg \max}{\theta} \left(\prod_{(S,\phi)\in T} \frac{\prod_{i=1}^{N-1} P_{\theta}(\pi_i \mid q_i, d_i) P_{\theta}(q_i \mid q_{i-1}) P_{\theta}(d_i \mid q_i)}{P_{\theta}(S)} \right)$$

Unfortunately, EM-like update equations which have been derived for pure HMM's tend to be unstable (e.g., Reichl and Ruske, 1995; Normandin, 1996). Update equations for GHMM's, PHMM's, GPHMM's, and PhyloHMM's have (as far as I know) not yet been derived.

2. Newer Decoders Also Not Optimal

Posterior Viterbi (Fariselli et al., 2005), OAD (Käll et al., 2005):

$$\phi \prod_{\lambda_i \in \phi} P_e(\lambda_i \mid s_i) \delta(q_i \mid q_{i-1})$$

$$\underset{\phi}{\operatorname{argmax}} \sum_{\lambda_i \in \phi} P_e(\lambda_i \,|\, s_i) \delta(q_i \,|\, q_{i-1})$$

	algorithm	nuc	exon	gene	
200 training	A _{Vit}	85%	42%	24%	
genes, 50 test	A_{PV}	89%	41%	26%	(Oryza sativa)
genes	A _{OAD}	89%	41%	26%	
1000 training	algorithm	nuc	exon	gene	
root raining	A_{Vit}	96%	68%	36%	(Arabidonsis thaliana)
genes, 200 test genes	A_{PV}	97%	64%	33%	
	A _{OAD}	97%	61%	30%	
200 training	algorithm	nuc	exon	gene	
genes, 50 test genes	A _{Vit}	94%	50%	30%	
	A_{PV}	96%	39%	22%	(Aspergillus fumigatus)
-	A_{OAD}	96%	39%	22%	

G/OAD and G/PV dynamic programming update formulas:

$$W_{j} = \begin{cases} 0 & \text{if } deg_{in}(q_{j}) = 0\\ \max_{i \in pred(j)} W_{i} + f_{i}b_{j}\lambda_{i \rightarrow j}P(s_{j} \mid q_{j}) & \text{otherwise} \end{cases}$$
$$V_{j} = \begin{cases} 1 & \text{if } deg_{in}(q_{j}) = 0\\ \max_{i \in pred(j)} V_{i}f_{i}b_{j}\lambda_{i \rightarrow j}P(s_{j} \mid q_{j}) & \text{otherwise} \end{cases}$$

decoding	nuc	exon	gene
system			
$(\xi_{MLE}, \mathcal{A}_{Vit})$	97%±1%	80%±1%	48% ± 3%
$(\xi_{MLE}, \mathcal{A}_{GPV})$	96%±0%	798 ± 28	48%±3%
$(\xi_{MLE}, \mathcal{A}_{GOAD})$	98%±0%	79% ± 1%	47%±2%
$(\xi_{\mathcal{O}(Vit)}, \mathcal{A}_{Vit})$	98%±0%	83%±1%	51% ± 3%
$(\xi_{\mathcal{O}(GPV)}, \mathcal{A}_{GPV})$	98%±0%	83%±3%	53% ± 3%
$(\xi_{\mathcal{O}(GOAD)}, \mathcal{A}_{GOAD})$	98%±1%	83% ± 3%	51% ± 5%

(Arabidopsis thaliana)

5-fold cross validation; (600 training genes & 200 test genes per run)

4. Intron Evolution is Rarely Modeled

Many Aspergillus orthologs have unequal numbers of exons.

(intron evolution, cont.)

5. Dependence on Pre-computed Alignments

As for the PhyloHMM & Combiner cases...

III. Future Directions

machine learning

NM

seudogenes

overtraining

maximum likelihood estimation

iterb

cDNA

1. Redefine the Problem

- Predict exons rather than whole genes -- a step backward?
- Classification rather than parsing
- This "solves" the alternative splicing problem (in a manner of speaking...)
- Possibly use a statistical ensemble representation of parses, and develop more sophisticated browsers that can use such a representation

2. A Greater Role for Machine Learning

- Use established, general-purpose ML algorithms
- Let the learner attend to the goal of maximal discrimination

3. Focus on Combiners

• Combiners integrate all available evidence

• Results from EGASP:

	NU	NUCLEOTIDE EXON		N	GENE		
	NS <i>n</i>	NSp	N CC	ES <i>n</i>	ESp	GSn	GSp
Combiners	-	•					
AUGUSTUS-any	94.42%	82.43%	0.88	74.67%	76.76%	47.97%	35.59%
FGENESH++	91.09%	76.89%	0.83	75.18%	69.31%	69.93%	42.09%
JIGSAW	<mark>94.56%</mark>	<mark>92.19%</mark>	<mark>0.93</mark>	<mark>80.61%</mark>	<mark>89.33%</mark>	<mark>72.64%</mark>	<mark>65.95%</mark>
PAIRAGON-any	87.77%	92.78%	0.90	76.85%	88.91%	69.59%	61.32%
HMM's & GHMM's	•			·			
AUGUSTUS-abinit	78.65%	75.29%	0.76	52.39%	62.93%	24.32%	17.22%
GENEMARK.hmm	78.43%	37.97%	0.53	50.58%	29.01%	15.20%	3.24%
GENEZILLA	87.56%	50.93%	0.66	62.08%	50.25%	19.59%	8.84%
Expression-based	·			•			
ACEVIEW	90.94%	79.14%	0.84	85.75%	56.98%	63.51%	48.65%
AUGUSTUS-EST	92.62%	83.45%	0.88	74.10%	77.40%	47.64%	37.01%
ENSEMBL	90.18%	92.02%	0.91	77.53%	82.65%	71.62%	67.32%
EXOGEAN	84.18%	94.33%	0.89	79.34%	83.45%	63.18%	80.82%
EXONHUNTER	90.46%	59.67%	0.73	64.44%	41.77%	21.96%	6.33%
PAIRAGON+NSCAN	87.56%	92.77%	0.90	76.63%	88.95%	69.59%	61.71%
Pair & Phylo HMM's	•			•		-	
AUGUSTUS-dual	88.86%	80.15%	0.84	63.06%	69.14%	26.01%	18.64%
DOGFISH	64.81%	88.24%	0.74	53.11%	77.34%	10.81%	14.61%
MARS	84.25%	74.13%	0.78	65.56%	61.65%	33.45%	24.94%
NSCAN	85.38%	89.02%	0.87	67.66%	82.05%	35.47%	36.71%
SAGA	52.54%	81.39%	0.65	38.82%	50.73%	4.39%	3.44%

Source: Guigo et al., 2006 (to appear in Genome Biology)

4. Interoperability

Contemplating the Future

Image: Search Image: Search Image: Search Image: Search Image: Search Image: Search										
Home Bookmarks										
		Software								
<u>n</u>	ome									
S	onware	Legend: GF=gene finder; OS=open source; RP=related program or software								
d	ata sets	29 gene finders (12 open source) and 14 related programs (8 open source)								
<u>a</u>	rucies	Project	Description	Contacts						
0	ibliography									
d	iscussion	SNAP	GFOS GHMM eukaryotic gene finder	Ian Korf						
u r	seful links esearch	GlimmerHMM	GFOS GHMM eukaryotic gene finder	Mihaela Pertea						
g	<u>roups</u> ubmit content	TigrScan	GFOS GHMM eukaryotic gene finder	Bill Majoros						
		<u>TWINSCAN</u>	GFOS GHMM informant method for comparative gene finding	Michael Brent						
		Combiner	GFOS Uses the output from gene finders, splice site prediction programs and sequence alignments to predict gene models.	Jonathan Allen						
		<u>GlimmerM</u>	GFOS Eukaryotic gene finder using OC1 decision trees and Interpolated Markov Models.	Mihaela Pertea						

ACKNOWLEDGEMENTS

TIGR: S. Salzberg, M. Pertea, J. Allen, A. Delcher, J. Wortman, B. Haas

Duke: U. Ohler, S. Mukherjee

Elsewhere: M. Yandell, I. Korf, J. Eisen

Methods for Computational Gene Prediction

W.H. Majoros

Expected publication date: late 2006

www.geneprediction.org/book

William H. Majorox

m ood iation

cDNA